高三數(shù)學(xué)教案模板范文

| 新華0

教案可以幫助教師了解學(xué)生的學(xué)習(xí)情況和需求,從而更好地指導(dǎo)教師進(jìn)行教學(xué),提高教學(xué)效果和學(xué)生的學(xué)習(xí)效果。下面小編給大家提供一些高三數(shù)學(xué)教案模板范文參考,希望對(duì)大家寫高三數(shù)學(xué)教案模板范文有幫助。

高三數(shù)學(xué)教案模板范文篇1

教學(xué)目標(biāo)

知識(shí)目標(biāo)等差數(shù)列定義等差數(shù)列通項(xiàng)公式

能力目標(biāo)掌握等差數(shù)列定義等差數(shù)列通項(xiàng)公式

情感目標(biāo)培養(yǎng)學(xué)生的觀察、推理、歸納能力

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn)等差數(shù)列的概念的理解與掌握

等差數(shù)列通項(xiàng)公式推導(dǎo)及應(yīng)用教學(xué)難點(diǎn)等差數(shù)列“等差”的理解、把握和應(yīng)用

教學(xué)過程

由_《紅高粱》主題曲“酒神曲”引入等差數(shù)列定義

問題:多媒體演示,觀察————發(fā)現(xiàn)?

一、等差數(shù)列定義:

一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

例1:觀察下面數(shù)列是否是等差數(shù)列:…。

二、等差數(shù)列通項(xiàng)公式:

已知等差數(shù)列{an}的首項(xiàng)是a1,公差是d。

則由定義可得:

a2—a1=d

a3—a2=d

a4—a3=d

……

an—an—1=d

即可得:

an=a1+(n—1)d

例2已知等差數(shù)列的首項(xiàng)a1是3,公差d是2,求它的通項(xiàng)公式。

分析:知道a1,d,求an。代入通項(xiàng)公式

解:∵a1=3,d=2

∴an=a1+(n—1)d

=3+(n—1)×2

=2n+1

例3求等差數(shù)列10,8,6,4…的第20項(xiàng)。

分析:根據(jù)a1=10,d=—2,先求出通項(xiàng)公式an,再求出a20

解:∵a1=10,d=8—10=—2,n=20

由an=a1+(n—1)d得

∴a20=a1+(n—1)d

=10+(20—1)×(—2)

=—28

例4:在等差數(shù)列{an}中,已知a6=12,a18=36,求通項(xiàng)an。

分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項(xiàng)公式an=a1+(n—1)d中,可得兩個(gè)方程,都含a1與d兩個(gè)未知數(shù)組成方程組,可解出a1與d。

解:由題意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n—1)×2=2n

練習(xí)

1、判斷下列數(shù)列是否為等差數(shù)列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④—1,—8,—15,—22,—29;

答案:①不是②是①不是②是

2、等差數(shù)列{an}的前三項(xiàng)依次為a—6,—3a—5,—10a—1,則a等于()

A、1B、—1C、—1/3D、5/11

提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)

3、在數(shù)列{an}中a1=1,an=an+1+4,則a10=。

提示:d=an+1—an=—4

教師繼續(xù)提出問題

已知數(shù)列{an}前n項(xiàng)和為……

作業(yè)

P116習(xí)題3。21,2

高三數(shù)學(xué)教案模板范文篇2

概率統(tǒng)計(jì)

一、知識(shí)梳理

1.三種抽樣方法的聯(lián)系與區(qū)別:

類別共同點(diǎn)不同點(diǎn)相互聯(lián)系適用范圍

簡(jiǎn)單隨機(jī)抽樣都是等概率抽樣從總體中逐個(gè)抽取總體中個(gè)體比較少

系統(tǒng)抽樣將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取在起始部分采用簡(jiǎn)單隨機(jī)抽樣總體中個(gè)體比較多

分層抽樣將總體分成若干層,按個(gè)體個(gè)數(shù)的比例抽取在各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣總體中個(gè)體有明顯差異

(1)從含有N個(gè)個(gè)體的總體中抽取n個(gè)個(gè)體的樣本,每個(gè)個(gè)體被抽到的概率為

(2)系統(tǒng)抽樣的步驟:①將總體中的個(gè)體隨機(jī)編號(hào);②將編號(hào)分段;③在第1段中用簡(jiǎn)單隨機(jī)抽樣確定起始的個(gè)體編號(hào);④按照事先研究的規(guī)則抽取樣本.

(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個(gè)體的個(gè)數(shù);③各層抽樣;④匯合成樣本.

(4)要懂得從圖表中提取有用信息

如:在頻率分布直方圖中①小矩形的面積=組距=頻率②眾數(shù)是矩形的中點(diǎn)的橫坐標(biāo)③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計(jì)中位數(shù)的值

2.方差和標(biāo)準(zhǔn)差都是刻畫數(shù)據(jù)波動(dòng)大小的數(shù)字特征,一般地,設(shè)一組樣本數(shù)據(jù),,…,,其平均數(shù)為則方差,標(biāo)準(zhǔn)差

3.古典概型的概率公式:如果一次試驗(yàn)中可能出現(xiàn)的結(jié)果有個(gè),而且所有結(jié)果都是等可能的,如果事件包含個(gè)結(jié)果,那么事件的概率P=

特別提醒:古典概型的兩個(gè)共同特點(diǎn):

○1,即試中有可能出現(xiàn)的基本事件只有有限個(gè),即樣本空間Ω中的元素個(gè)數(shù)是有限的;

○2,即每個(gè)基本事件出現(xiàn)的可能性相等。

4.幾何概型的概率公式:P(A)=

特別提醒:幾何概型的特點(diǎn):試驗(yàn)的結(jié)果是無限不可數(shù)的;○2每個(gè)結(jié)果出現(xiàn)的可能性相等。

二、夯實(shí)基礎(chǔ)

(1)某單位有職工160名,其中業(yè)務(wù)人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個(gè)容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務(wù)人員、管理人員、后勤人員的人數(shù)應(yīng)分別為____________.

(2)某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了

11場(chǎng)比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,

則甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù)分別為()

A.19、13B.13、19C.20、18D.18、20

(3)統(tǒng)計(jì)某校1000名學(xué)生的數(shù)學(xué)會(huì)考成績(jī),

得到樣本頻率分布直方圖如右圖示,規(guī)定不低于60分為

及格,不低于80分為優(yōu)秀,則及格人數(shù)是;

優(yōu)秀率為。

(4)在一次歌手大獎(jiǎng)賽上,七位評(píng)委為歌手打出的分?jǐn)?shù)如下:

9.48.49.49.99.69.49.7

去掉一個(gè)分和一個(gè)最低分后,所剩數(shù)據(jù)的平均值

和方差分別為()

A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016

(5)將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),則以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=27的內(nèi)部的概率________.

(6)在長(zhǎng)為12cm的線段AB上任取一點(diǎn)M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為()

三、高考鏈接

07、某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與19秒之間,將測(cè)試結(jié)果按如下方式分成六組:第一組,成績(jī)大于等于13秒且小于14秒;第二組,成績(jī)大于等于14秒且小于15秒

;第六組,成績(jī)大于等于18秒且小于等于19秒.右圖

是按上述分組方法得到的頻率分布直方圖.設(shè)成績(jī)小于17秒

的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為,成績(jī)大于等于15秒

且小于17秒的學(xué)生人數(shù)為,則從頻率分布直方圖中可分析

出和分別為()

08、從某項(xiàng)綜合能力測(cè)試中抽取100人的成績(jī),統(tǒng)計(jì)如表,則這100人成績(jī)的標(biāo)準(zhǔn)差為()

分?jǐn)?shù)54321

人數(shù)2010303010

09、在區(qū)間上隨機(jī)取一個(gè)數(shù)x,的值介于0到之間的概率為().

08、現(xiàn)有8名奧運(yùn)會(huì)志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個(gè)小組.

(Ⅰ)求被選中的概率;(Ⅱ)求和不全被選中的概率.

高三數(shù)學(xué)教案模板范文篇3

一、教材與學(xué)情分析

《隨機(jī)抽樣》是人教版職教新教材《數(shù)學(xué)(必修)》下冊(cè)第六章第一節(jié)的內(nèi)容,“簡(jiǎn)單隨機(jī)抽樣”是“隨機(jī)抽樣”的基礎(chǔ),“隨機(jī)抽樣”又是“統(tǒng)計(jì)學(xué)‘的基礎(chǔ),因此,在“統(tǒng)計(jì)學(xué)”中,“簡(jiǎn)單隨機(jī)抽樣”是基礎(chǔ)的基礎(chǔ)針對(duì)這樣的情況,我做了如下的教學(xué)設(shè)想。

二、教學(xué)設(shè)想

(一)教學(xué)目標(biāo):

(1)理解抽樣的必要性,簡(jiǎn)單隨機(jī)抽樣的概念,掌握簡(jiǎn)單隨機(jī)抽樣的兩種方法;

(2)通過實(shí)例分析、解決,體驗(yàn)簡(jiǎn)單隨機(jī)抽樣的科學(xué)性及其方法的可靠性,培養(yǎng)分析問題,解決問題的能力;

(3)通過身邊事例研究,體會(huì)抽樣調(diào)查在生活中的應(yīng)用,培養(yǎng)抽樣思考問題意識(shí),養(yǎng)成良好的個(gè)性品質(zhì)。

(二)教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):掌握簡(jiǎn)單隨機(jī)抽樣常見的兩種方法(抽簽法、隨機(jī)數(shù)表法)

難點(diǎn):理解簡(jiǎn)單隨機(jī)抽樣的科學(xué)性,以及由此推斷結(jié)論的可靠性

為了突出重點(diǎn),突破難點(diǎn),達(dá)到預(yù)期的教學(xué)目標(biāo),我再從教法、學(xué)法上談?wù)勎业慕虒W(xué)思路及設(shè)想。

下面我再具體談?wù)劷虒W(xué)實(shí)施過程,分四步完成。

三、教學(xué)過程

(一)設(shè)置情境,提出問題

〈屏幕出示〉例1:請(qǐng)問下列調(diào)查宜“普查”還是“抽樣”調(diào)查?

A、一鍋水餃的味道

B、旅客上飛機(jī)前的安全檢查

C、一批炮彈的殺傷半徑

D、一批彩電的質(zhì)量情況

E、美國(guó)總統(tǒng)的民意支持率

學(xué)生討論后,教師指出生活中處處有“抽樣”,并板書課題——____抽樣

「設(shè)計(jì)意圖」

生活中處處有“抽樣”調(diào)查,明確學(xué)習(xí)“抽樣”的必要性。

(二)主動(dòng)探究,構(gòu)建新知

〈屏幕出示〉例2:語文老師為了了解電(1)班同學(xué)對(duì)某首詩的背誦情況,應(yīng)采用下列哪種抽查方式?為什么?

A、在班級(jí)12名班委名單中逐個(gè)抽查5位同學(xué)進(jìn)行背誦

B、在班級(jí)45名同學(xué)中逐一抽查10位同學(xué)進(jìn)行背誦

先讓學(xué)生分析、選擇B后,師生一起歸納其特征:

(1)不放回逐一抽樣,

(2)抽樣有代表性(個(gè)體被抽到可能性相等),

學(xué)生體驗(yàn)B種抽樣的科學(xué)性后,教師指出這是簡(jiǎn)單隨機(jī)抽樣,并復(fù)習(xí)初中講過的有關(guān)概念,最后教師補(bǔ)充板書課題——(簡(jiǎn)單隨機(jī))抽樣及其定義。

從例1、例2中的正反兩方面,讓學(xué)生體驗(yàn)隨機(jī)抽樣的科學(xué)性。這是突破教學(xué)難點(diǎn)的重要環(huán)節(jié)之一。

復(fù)習(xí)基本概念,如“總體”、“個(gè)體”、“樣本”、“樣本容量”等。

〈屏幕出示〉例4我們班有44名學(xué)生,現(xiàn)從中抽出5名學(xué)生去參加學(xué)生座談會(huì),要使每名學(xué)生的機(jī)會(huì)均等,我們應(yīng)該怎么做?談?wù)勀愕南敕ā?/p>

先讓學(xué)生獨(dú)立思考,然后分小組合作學(xué)習(xí),最后各小組推薦一位同學(xué)發(fā)言,最后師生一起歸納“抽簽法”步驟:

(1)編號(hào)制簽

(2)攪拌均勻

(3)逐個(gè)不放回抽取n次。教師板書上面步驟。

請(qǐng)一位同學(xué)說說例3采用“抽簽法”的實(shí)施步驟。

「設(shè)計(jì)意圖」

1、反饋練習(xí)落實(shí)知識(shí)點(diǎn)突出重點(diǎn)。

2、體會(huì)“抽簽法”具有“簡(jiǎn)單、易行”的優(yōu)點(diǎn)。

〈屏幕出示〉例5、第07374期特等獎(jiǎng)號(hào)碼為08+25+09+21+32+27+13,本期銷售金額19872409元,中獎(jiǎng)金額500萬。

提問:特等獎(jiǎng)號(hào)碼如何確定呢?彩票中獎(jiǎng)號(hào)碼適合用抽簽法確定嗎?

讓學(xué)生觀看觀看電視搖獎(jiǎng)過程,分析抽簽法的局限性,從而引入隨機(jī)數(shù)表法。教師出示一份隨機(jī)數(shù)表,并介紹隨機(jī)數(shù)表,強(qiáng)調(diào)數(shù)表上的數(shù)字都是隨機(jī)的,各個(gè)數(shù)字出現(xiàn)的可能性均等,結(jié)合上例讓學(xué)生討論隨機(jī)數(shù)表法的步驟,最后師生一起歸納步驟:

(1)編號(hào)

(2)在隨機(jī)數(shù)表上確定起始位置

(3)取數(shù)。教師板書上面步驟。

請(qǐng)一位同學(xué)說說例3采用“隨機(jī)數(shù)表法”的實(shí)施步驟。

高三數(shù)學(xué)教案模板范文篇4

大家好!

我是__數(shù)學(xué)教師__,我今天說課的題目是:人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修5第一章第一節(jié)的第一課時(shí)《正弦定理》,依據(jù)新課程標(biāo)準(zhǔn)對(duì)教材的要求,結(jié)合我對(duì)教材的理解,我將從以下幾個(gè)方面說明我的設(shè)計(jì)和構(gòu)思。

一、教材分析

“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn)“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。

二、學(xué)情分析

我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。

三、教學(xué)目標(biāo)

1、知識(shí)和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問題。

過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。

情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。

2、教學(xué)重點(diǎn)、難點(diǎn)

教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。

教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。

四、教學(xué)方法與手段

為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。

高三數(shù)學(xué)教案模板范文篇5

一次函數(shù)的的教案

一、教學(xué)目標(biāo)

1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系。

2、能根據(jù)所給條件寫出簡(jiǎn)單的一次函數(shù)表達(dá)式。

二、能力目標(biāo)

1、經(jīng)歷一般規(guī)律的探索過程、發(fā)展學(xué)生的抽象思維能力。

2、通過由已知信息寫一次函數(shù)表達(dá)式的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

三、情感目標(biāo)   1、通過函數(shù)與變量之間的關(guān)系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學(xué)生的數(shù)學(xué)思維。

2、經(jīng)歷利用一次函數(shù)解決實(shí)際問題的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

四、教學(xué)重難點(diǎn)   1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。   2、會(huì)根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

五、教學(xué)過程

1、新課導(dǎo)入   有關(guān)函數(shù)問題在我們?nèi)粘I钪须S處可見,如彈簧秤有自然長(zhǎng)度,在彈性限度內(nèi),隨著所掛物體的重量的'增加,彈簧的長(zhǎng)度相應(yīng)的會(huì)拉長(zhǎng),那么所掛物體的重量與彈簧的長(zhǎng)度之間就存在某種關(guān)系,究竟是什么樣的關(guān)系,請(qǐng)看:   某彈簧的自然長(zhǎng)度為 3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加 1千克、彈簧長(zhǎng)度y增加 0.5厘米。

(1)計(jì)算所掛物體的質(zhì)量分別為 1千克、 2千克、 3千克、 4千克、 5千克時(shí)彈簧的長(zhǎng)度,

(2)你能寫出x與y之間的關(guān)系式嗎?

分析:當(dāng)不掛物體時(shí),彈簧長(zhǎng)度為 3厘米,當(dāng)掛 1千克物體時(shí),增加 0.5厘米,總長(zhǎng)度為 3.5厘米,當(dāng)增加 1千克物體,即所掛物體為 2千克時(shí),彈簧又增加 0.5厘米,總共增加 1厘米,由此可見,所掛物體每增加 1千克,彈簧就伸長(zhǎng) 0.5厘米,所掛物體為x千克,彈簧就伸長(zhǎng)0.5x厘米,則彈簧總長(zhǎng)為原長(zhǎng)加伸長(zhǎng)的長(zhǎng)度,即y=3+0.5x。

2、做一做   某輛汽車油箱中原有汽油 100升,汽車每行駛 50千克耗油 9升。你能寫出x與y之間的關(guān)系嗎?(y=1000.18x或y=100 x)   接著看下面這些函數(shù),你能說出這些函數(shù)有什么共同的特點(diǎn)嗎?上面的幾個(gè)函數(shù)關(guān)系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。

3、一次函數(shù),正比例函數(shù)的概念   若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。

4、例題講解   例1:下列函數(shù)中,y是x的一次函數(shù)的是( )  ?、賧=x6;②y= ;③y= ;④y=7x   A、①②③ B、①③④ C、①②③④ D、②③④   分析:這道題考查的是一次函數(shù)的概念,特別要強(qiáng)調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B

高三數(shù)學(xué)教案模板范文篇6

組合

教學(xué)目標(biāo)

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學(xué)生掌握組合數(shù)的計(jì)算公式、組合數(shù)的性質(zhì)用組合數(shù)與排列數(shù)之間的關(guān)系;

(3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

(4)通過對(duì)排列、組合問題求解與剖析,培養(yǎng)學(xué)生學(xué)習(xí)興趣和思維深刻性,學(xué)生具有嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

教學(xué)建議

一、知識(shí)結(jié)構(gòu)

二、重點(diǎn)難點(diǎn)分析

本小節(jié)的重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式,組合數(shù)的性質(zhì)。難點(diǎn)是解組合的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理與乘法原理的掌握和應(yīng)用,并將這兩個(gè)原理的基本思想貫穿在解決組合應(yīng)用題當(dāng)中。

組合與組合數(shù),也有上面類似的關(guān)系。從n個(gè)不同元素中任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中任取m個(gè)元素的一個(gè)組合。所有這些不同的組合的個(gè)數(shù)叫做組合數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的一個(gè)集合(無序集),相當(dāng)于一個(gè)組合,而這種集合的個(gè)數(shù),就是相應(yīng)的組合數(shù)。

解排列組合應(yīng)用題時(shí)主要應(yīng)抓住是排列問題還是組合問題,其次要搞清需要分類,還是需要分步.切記:排組分清(有序排列、無序組合),加乘明確(分類為加、分步為乘).

三、教法設(shè)計(jì)

1.對(duì)于基礎(chǔ)較好的學(xué)生,建議把排列與組合的概念進(jìn)行對(duì)比的進(jìn)行學(xué)習(xí),這樣有利于搞請(qǐng)這兩組概念的區(qū)別與聯(lián)系.

2.學(xué)生與老師可以合編一些排列組合問題,如“45人中選出5人當(dāng)班干部有多少種選法?”與“45人中選出5人分別擔(dān)任班長(zhǎng)、副班長(zhǎng)、體委、學(xué)委、生委有多少種選法?”這是兩個(gè)相近問題,同學(xué)們會(huì)根據(jù)自己身邊的實(shí)際可以編出各種各樣的具有特色的問題,教師要引導(dǎo)學(xué)生辨認(rèn)哪個(gè)是排列問題,哪個(gè)是組合問題.這樣既調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,又在編題辨題中澄清了概念.

為了理解排列與組合的概念,建議大家學(xué)會(huì)畫排列與組合的樹圖.如,從a,b,c,d 4個(gè)元素中取出3個(gè)元素的排列樹圖與組合樹圖分別為:

排列樹圖

由排列樹圖得到,從a,b,c,d 取出3個(gè)元素的所有排列有24個(gè),它們分別是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.

組合樹圖

由組合樹圖可得,從a,b,c,d中取出3個(gè)元素的組合有4個(gè),它們是(abc),(abd),(acd),(bcd).

從以上兩組樹圖清楚的告訴我們,排列樹圖是對(duì)稱的,組合圖式不是對(duì)稱的,之所以排列樹圖具有對(duì)稱性,是因?yàn)閷?duì)于a,b,c,d四個(gè)字母哪一個(gè)都有在第一位的機(jī)會(huì),哪一個(gè)都有在第二位的機(jī)會(huì),哪一個(gè)都有在第三位的機(jī)會(huì),而組合只考慮字母不考慮順序,為實(shí)現(xiàn)無順序的要求,我們可以限定a,b,c,d的順序是從前至后,固定了死順序等于無順序,這樣組合就有了自己的樹圖.

學(xué)會(huì)畫組合樹圖,不僅有利于理解排列與組合的概念,還有助于推導(dǎo)組合數(shù)的計(jì)算公式.

3.排列組合的應(yīng)用問題,教師應(yīng)從簡(jiǎn)單問題問題入手,逐步到有一個(gè)附加條件的單純排列問題或組合問題,最后在設(shè)及排列與組合的綜合問題.

對(duì)于每一道題目,教師必須先讓學(xué)生獨(dú)立思考,在進(jìn)行全班討論,對(duì)于學(xué)生的每一種解法,教師要先讓學(xué)生判斷正誤,在給予點(diǎn)播.對(duì)于排列、組合應(yīng)用問題的解決我們提倡一題多解,這樣有利于培養(yǎng)學(xué)生的分析問題解決問題的能力,在學(xué)生的多種解法基礎(chǔ)上教師要引導(dǎo)學(xué)生選擇方案,總結(jié)解題規(guī)律.對(duì)于學(xué)生解題中的常見錯(cuò)誤,教師一定要講明道理,認(rèn)真分析錯(cuò)誤原因,使學(xué)生在是非的判斷得以提高.

4.兩個(gè)性質(zhì)定理教學(xué)時(shí),對(duì)定理1,可以用下例來說明:從4個(gè)不同的元素a,b,c,d里每次取出3個(gè)元素的組合及每次取出1個(gè)元素的組合分別是

這就說明從4個(gè)不同的元素里每次取出3個(gè)元素的組合與從4個(gè)元素里每次取出1個(gè)元素的組合是—一對(duì)應(yīng)的.

對(duì)定理2,可啟發(fā)學(xué)生從下面問題的討論得出.從n個(gè)不同元素 ,,…,里每次取出m個(gè)不同的元素(),問:(1)可以組成多少個(gè)組合;(2)在這些組合里,有多少個(gè)是不含有的;(3)在這些組合里,有多少個(gè)是含有 的;(4)從上面的結(jié)果,可以得出一個(gè)怎樣的公式.在此基礎(chǔ)上引出定理2.

對(duì)于 ,和一樣,是一種規(guī)定.而學(xué)生常常誤以為是推算出來的,因此,教學(xué)時(shí)要講清楚.

教學(xué)設(shè)計(jì)示例

教學(xué)目標(biāo)

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

(3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

教學(xué)重點(diǎn)難點(diǎn)

重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

難點(diǎn)是解組合的應(yīng)用題.

教學(xué)過程設(shè)計(jì)

(-)導(dǎo)入新課

(教師活動(dòng))提出下列思考問題,打出字幕.

[字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

(學(xué)生活動(dòng))討論并回答.

答案提示:(1)排列;(2)組合.

[評(píng)述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計(jì)的問題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問題.

(二)新課講授

[提出問題 創(chuàng)設(shè)情境]

(教師活動(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說明一個(gè)組合是什么?

3.一個(gè)組合與一個(gè)排列有何區(qū)別?

(學(xué)生活動(dòng))閱讀回答.

(教師活動(dòng))對(duì)照課文,逐一評(píng)析.

設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境.

【歸納概括 建立新知】

(教師活動(dòng))承接上述問題的回答,展示下面知識(shí).

[字幕]模型:從 個(gè)不同元素中取出個(gè)元素并成一組,叫做從個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

組合數(shù):從 個(gè)不同元素中取出個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào)表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為.

[評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

(學(xué)生活動(dòng))傾聽、思索、記錄.

(教師活動(dòng))提出思考問題.

[投影] 與的關(guān)系如何?

(師生活動(dòng))共同探討.求從 個(gè)不同元素中取出個(gè)元素的排列數(shù),可分為以下兩步:

第1步,先求出從這 個(gè)不同元素中取出個(gè)元素的組合數(shù)為;

第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為.

根據(jù)分步計(jì)數(shù)原理,得到

[字幕]公式1:

公式2:

(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

【例題示范 探求方法】

(教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.

[字幕]例1 列舉從4個(gè)元素中任取2個(gè)元素的所有組合.

例2 計(jì)算:(1);(2).

(學(xué)生活動(dòng))板演、示范.

(教師活動(dòng))講評(píng)并指出用兩種方法計(jì)算例2的第2小題.

[字幕]例3 已知,求的所有值.

(學(xué)生活動(dòng))思考分析.

解 首先,根據(jù)組合的定義,有

其次,由原不等式轉(zhuǎn)化為

解得 ②

綜合①、②,得 ,即

[點(diǎn)評(píng)]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.

【反饋練習(xí) 學(xué)會(huì)應(yīng)用】

(教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評(píng).

[課堂練習(xí)]課本P99練習(xí)第2,5,6題.

[補(bǔ)充練習(xí)]

[字幕]1.計(jì)算:

2.已知 ,求.

(學(xué)生活動(dòng))板演、解答.

設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

【點(diǎn)評(píng)矯正 交流提高】

(教師活動(dòng))依照學(xué)生的板演,給予指正并總結(jié).

補(bǔ)充練習(xí)答案:

1.解:原式:

2.解:由題設(shè)得

整理化簡(jiǎn)得 ,

解之,得 或(因,舍去),

所以 ,所求

[字幕]小結(jié):

1.前一個(gè)公式主要用于計(jì)算具體的組合數(shù),而后一個(gè)公式則主要用于對(duì)含有字母的式子進(jìn)行化簡(jiǎn)和論證.

2.在解含組合數(shù)的方程或不等式時(shí),一定要注意組合數(shù)的上、下標(biāo)的限制條件.

(學(xué)生活動(dòng))交流討論,總結(jié)記錄.

設(shè)計(jì)意圖:由“實(shí)踐——認(rèn)識(shí)——一實(shí)踐”的認(rèn)識(shí)論,教學(xué)時(shí)抓住“學(xué)習(xí)—一練習(xí)——反饋———小結(jié)”這些環(huán)節(jié),使教學(xué)目標(biāo)得以強(qiáng)化和落實(shí).

(三)小結(jié)

(師生活動(dòng))共同小結(jié).

本節(jié)主要內(nèi)容有

1.組合概念.

2.組合數(shù)計(jì)算的兩個(gè)公式.

(四)布置作業(yè)

1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

3.研究性題:

在 的邊上除頂點(diǎn)外有5個(gè)點(diǎn),在邊上有4個(gè)點(diǎn),由這些點(diǎn)(包括)能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

(五)課后點(diǎn)評(píng)

在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

作業(yè)參考答案

2.解;設(shè)有男同學(xué) 人,則有女同學(xué)人,依題意有,由此解得或或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.

3.能組成 (注意不能用點(diǎn)為頂點(diǎn))個(gè)四邊形,個(gè)三角形.

探究活動(dòng)

同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?

解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.

解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

甲拿乙制作的賀卡時(shí),則賀卡有3種分配方法.

甲拿丙制作的賀卡時(shí),則賀卡有3種分配方法.

甲拿丁制作的賀卡時(shí),則賀卡有3種分配方法.

由加法原理得,賀卡分配方法有3+3+3=9種.

解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時(shí)還存在正向與逆向兩種思考途徑.

正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對(duì)方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有(種).

逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時(shí)即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有(種).

說明(1)對(duì)一類元素不太多而利用排列或組合計(jì)算公式計(jì)算比較復(fù)雜,且容易重復(fù)遺漏計(jì)算的排列組合問題,??刹捎弥苯臃诸惡笥眉臃ㄔ磉M(jìn)行計(jì)算,如本例采用解法一的做法.

(2)設(shè)集合 ,如果S中元素的一個(gè)排列滿足,則稱該排列為S的一個(gè)錯(cuò)位排列.本例就屬錯(cuò)位排列問題.如將S的所有錯(cuò)位排列數(shù)記為,則 有如下三個(gè)計(jì)算公式(李宇襄編著《組合數(shù)學(xué)》,北京師范大學(xué)出版社出版):

高三數(shù)學(xué)教案模板范文篇7

一、關(guān)于教材分析

1.教材的地位和作用

“曲線和方程”是高中數(shù)學(xué)第二冊(cè)(上)第七章《直線和圓的方程》的重點(diǎn)內(nèi)容之一,是在介紹了“直線的方程”之后,對(duì)一般曲線(也包括直線)與二元方程的關(guān)系作進(jìn)一步的研究。這部分內(nèi)容從理論上揭示了幾何中的“形”與代數(shù)中的“數(shù)”相統(tǒng)一的關(guān)系,為“形”與“數(shù)”的相互轉(zhuǎn)化開辟了途徑,同時(shí)也體現(xiàn)了解析幾何的基本思想,為解析幾何的教學(xué)奠定了一個(gè)理論基礎(chǔ)。

2.教學(xué)內(nèi)容的選擇和處理

本節(jié)教材主要講解曲線的方程和方程的曲線、坐標(biāo)法、解析幾何等概念,討論怎樣求曲線的方程以及曲線的交點(diǎn)等問題。共分四課時(shí)完成,這是第一課時(shí)。此課時(shí)的主要內(nèi)容是建立“曲線的方程”和“方程的曲線”這兩個(gè)概念,并對(duì)概念進(jìn)行初步運(yùn)用。我在處理教材時(shí),不拘泥于教材,敢于大膽進(jìn)行調(diào)整。主要體現(xiàn)在對(duì)曲線的方程和方程的曲線的定義進(jìn)行歸納上,通過構(gòu)造反例,引導(dǎo)學(xué)生進(jìn)行觀察、討論、分析、正反對(duì)比,逐步揭示其內(nèi)涵,然后在此基礎(chǔ)上歸納定義;再一點(diǎn)就是在得出定義之后,引導(dǎo)學(xué)生用集合觀點(diǎn)來理解概念。

3.教學(xué)目標(biāo)的確定

根據(jù)教學(xué)大綱的要求以及本節(jié)教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn),我認(rèn)為,通過本節(jié)課的教學(xué),應(yīng)使學(xué)生理解曲線和方程的概念;會(huì)用定義來判斷點(diǎn)是否在方程的曲線上、證明曲線的方程;培養(yǎng)學(xué)生分析、判斷、歸納的邏輯思維能力,滲透數(shù)形結(jié)合的數(shù)學(xué)思想;并借用曲線與方程的關(guān)系進(jìn)行辯證唯物主義觀點(diǎn)的教育;通過對(duì)問題的不斷探討,培養(yǎng)學(xué)生勇于探索的精神。

4.關(guān)于教學(xué)重點(diǎn)、難點(diǎn)和關(guān)鍵

由于曲線和方程的概念體現(xiàn)了解析幾何的基本思想,學(xué)生只有透徹理解了這個(gè)概念,才能用解析法去研究幾何圖形,才算是踏上解析幾何的入門之徑。因此,我把曲線和方程的概念確定為本節(jié)課的教學(xué)重點(diǎn)。另外,由于曲線和方程的概念比較抽象,加之剛剛進(jìn)入高二的學(xué)生抽象思維能力還不是很強(qiáng),因此,他們對(duì)曲線和方程關(guān)系的“純粹性”與“完備性”不易理解,弄不清它們之間的區(qū)別與聯(lián)系,易產(chǎn)生“為什么要規(guī)定這樣兩個(gè)關(guān)系”的疑問。所以,對(duì)概念的理解,尤其是對(duì)“兩個(gè)關(guān)系”的認(rèn)識(shí)是本節(jié)課的難點(diǎn)。

如何突破這一難點(diǎn)呢?由于學(xué)生在學(xué)習(xí)本節(jié)之前,已經(jīng)有了用方程表示幾何圖形的感性認(rèn)識(shí)(比如用方程表示直線、拋物線、雙曲線等)。因此,突破這一難點(diǎn)的關(guān)鍵在于利用學(xué)生積累的這些感性認(rèn)識(shí),通過分析反例,來揭示“兩個(gè)關(guān)系”中缺少任何一個(gè)都將破壞曲線與方程的統(tǒng)一性(即擴(kuò)大概念的外延)。

二、關(guān)于教學(xué)方法與教學(xué)手段的選用

根據(jù)本節(jié)課的教學(xué)內(nèi)容和學(xué)生的實(shí)際水平,我采用的是引導(dǎo)發(fā)現(xiàn)法和CAI輔助教學(xué)。

(1)引導(dǎo)發(fā)現(xiàn)法是通過教師的引導(dǎo)、啟發(fā),調(diào)動(dòng)學(xué)生參與教學(xué)活動(dòng)的積極性,充分發(fā)揮教師的主導(dǎo)作用和學(xué)生的主體作用。在教學(xué)中通過設(shè)置疑問,創(chuàng)造出思維情境,然后引導(dǎo)學(xué)生動(dòng)腦、動(dòng)手、動(dòng)口,使學(xué)生在開放、民主、和諧的教學(xué)氛圍中獲取知識(shí),提高能力,促進(jìn)思維的發(fā)展。

(2)借助CAI輔助教學(xué),增大教學(xué)的容量和直觀性,增強(qiáng)學(xué)習(xí)興趣,從而達(dá)到提高教學(xué)效果和教學(xué)質(zhì)量的目的。(這也符合教學(xué)論中的直觀性原則和可接受性原則。)

(3)教具:三角板、多媒體。

三、關(guān)于學(xué)法指導(dǎo)

古人說得好,“授人以魚,只供一飯;教人以漁,終身受用?!蔽覀?cè)谙驅(qū)W生傳授知識(shí)的同時(shí),必須教給他們好的學(xué)習(xí)方法,讓他們學(xué)會(huì)學(xué)習(xí)、享受學(xué)習(xí)。因此,在本節(jié)課的教學(xué)中,引導(dǎo)學(xué)生開展“仔細(xì)看、動(dòng)腦想、多交流、細(xì)比較、勤練習(xí)”的研討式學(xué)習(xí),加大學(xué)生的參與機(jī)會(huì),增強(qiáng)參與意識(shí),讓他們體驗(yàn)獲取知識(shí)的歷程,掌握思考問題的方法,逐漸培養(yǎng)他們“會(huì)觀察”、“會(huì)類比”、“會(huì)分析”、“會(huì)歸納”的能力。

高三數(shù)學(xué)教案模板范文篇8

教學(xué)目標(biāo)

1.掌握平面向量的數(shù)量積及其幾何意義;

2.掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

3.了解用平面向量的數(shù)量積可以處理垂直的問題;

4.掌握向量垂直的條件.

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):平面向量的數(shù)量積定義

教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

教學(xué)過程

平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,則數(shù)量abcosq叫a與b的數(shù)量積,記作a×b,即有a×b=abcosq,(0≤θ≤π).并規(guī)定0向量與任何向量的數(shù)量積為0.

×探究:

1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎?什么時(shí)候?yàn)樨?fù)?

2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?

(1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定.

(2)兩個(gè)向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書寫時(shí)要嚴(yán)格區(qū)分.符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替.

(3)在實(shí)數(shù)中,若__,且a×b=0,則b=0;但是在數(shù)量積中,若__,且a×b=0,不能推出b=0.因?yàn)槠渲衏osq有可能為0.

高三數(shù)學(xué)教案模板范文篇9

一、教材分析

1、本節(jié)內(nèi)容在全書及章節(jié)的地位:《函數(shù)的單調(diào)性》是必修1第一章第 3 節(jié),

高中數(shù)學(xué)《函數(shù)的單調(diào)性》說課稿教案模板

。是高考的重點(diǎn)考查內(nèi)容之一,是函數(shù)的一個(gè)重要性質(zhì),在比較幾個(gè)數(shù)的大小、求函數(shù)值域、對(duì)函數(shù)的定性分析以及與其他知識(shí)的綜合上都有廣泛的應(yīng)用。通過對(duì)這一節(jié)課的學(xué)習(xí),可以讓學(xué)生加深對(duì)函數(shù)的本質(zhì)認(rèn)識(shí)。也為今后研究具體函數(shù)的性質(zhì)作了充分準(zhǔn)備,起到承上啟下的作用。

2、教學(xué)目標(biāo):根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知水平我制定如下教學(xué)目標(biāo):

基礎(chǔ)知識(shí)目標(biāo):了解能用文字語言和符號(hào)語言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;明確掌握利用函數(shù)單調(diào)性定義證明函數(shù)單調(diào)性的方法與步驟;并能用定義證明某些簡(jiǎn)單函數(shù)的單調(diào)性;

能力訓(xùn)練目標(biāo):培養(yǎng)學(xué)生嚴(yán)密的.邏輯思維能力、用運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,

情感目標(biāo):讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習(xí)的樂趣。

重點(diǎn):形成增(減)函數(shù)的形式化定義。

難點(diǎn)。形成增減函數(shù)概念的過程中,如何從圖像升降的直觀認(rèn)識(shí)過渡到函數(shù)增減數(shù)學(xué)符號(hào)語言表述;用定義證明函數(shù)的單調(diào)性。

為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>

二、 教法

在教學(xué)中我使用啟發(fā)式教學(xué),在教師的引導(dǎo)下,創(chuàng)設(shè)情景,通過開放性問題的設(shè)置來啟發(fā)學(xué)生思考,在思考中體會(huì)數(shù)學(xué)概念形成過程中所蘊(yùn)涵的數(shù)學(xué)方法,

資料共享平臺(tái)

《高中數(shù)學(xué)《函數(shù)的單調(diào)性》說課稿教案模板》

三、學(xué)法

倡導(dǎo)學(xué)生主動(dòng)參與、樂于探究、勤于動(dòng)手,培養(yǎng)學(xué)生搜集和處理信息的能力、獲取新知識(shí)的能力、分析和解決問題的能力以及交流與合作的能力”。數(shù)學(xué)作為基礎(chǔ)教育的核心課程之一,轉(zhuǎn)變學(xué)生數(shù)學(xué)學(xué)習(xí)方式,不僅有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),而且有利于促進(jìn)學(xué)生整體學(xué)習(xí)方式的轉(zhuǎn)變。我以建構(gòu)主義理論為指導(dǎo),輔以多媒體手段,采用著重于學(xué)生探索研究的啟發(fā)式教學(xué)方法,結(jié)合師生共同討論、歸納。在課堂結(jié)構(gòu)上,我根據(jù)學(xué)生的認(rèn)知水平,我設(shè)計(jì)了 ①創(chuàng)設(shè)情境——引入概念②觀察歸納——形成概念③討論研究——深化概念④即時(shí)訓(xùn)練—鞏固新知⑤總結(jié)反思——提高認(rèn)識(shí)⑥任務(wù)后延——自主探究六個(gè)層次的學(xué)法,

它們環(huán)環(huán)相扣,層層深入,從而順利完成教學(xué)目標(biāo)。接下來,我再具體談一談這堂課的教學(xué)過程:

四、 教學(xué)程序及設(shè)想

(一) 創(chuàng)設(shè)情境——引入概念

通過設(shè)置問題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點(diǎn)撥、啟發(fā)、引導(dǎo)為教師職責(zé)。

1、由具體的數(shù)列實(shí)例引入:

觀察下列各個(gè)函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:隨x的增大,y的值有什么變化。

高三數(shù)學(xué)教案模板范文篇10

高中數(shù)學(xué)反函數(shù)教案

教學(xué)目標(biāo)

1.使學(xué)生了解反函數(shù)的概念;

2.使學(xué)生會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù);

3.培養(yǎng)學(xué)生用辯證的觀點(diǎn)觀察、分析解決問題的能力。

教學(xué)重點(diǎn)

1.反函數(shù)的概念;

2.反函數(shù)的求法。

教學(xué)難點(diǎn)

反函數(shù)的概念。

教學(xué)方法

師生共同討論

教具裝備

幻燈片2張

第一張:反函數(shù)的定義、記法、習(xí)慣記法。(記作A);

第二張:本課時(shí)作業(yè)中的預(yù)習(xí)內(nèi)容及提綱。

教學(xué)過程

(I)講授新課

(檢查預(yù)習(xí)情況)

師:這節(jié)課我們來學(xué)習(xí)反函數(shù)(板書課題)§2.4.1 反函數(shù)的概念。

同學(xué)們已經(jīng)進(jìn)行了預(yù)習(xí),對(duì)反函數(shù)的概念有了初步的了解,誰來復(fù)述一下反函數(shù)的定義、記法、習(xí)慣記法?

生:(略)

(學(xué)生回答之后,打出幻燈片A)。

師:反函數(shù)的定義著重強(qiáng)調(diào)兩點(diǎn):

(1)根據(jù)y= f(x)中x與y的關(guān)系,用y把x表示出來,得到x=φ(y);

(2)對(duì)于y在c中的任一個(gè)值,通過x=φ(y),x在A中都有惟一的值和它對(duì)應(yīng)。

師:應(yīng)該注意習(xí)慣記法是由記法改寫過來的'。

師:由反函數(shù)的定義,同學(xué)們考慮一下,怎樣的映射確定的函數(shù)才有反函數(shù)呢?

生:一一映射確定的函數(shù)才有反函數(shù)。

(學(xué)生作答后,教師板書,若學(xué)生答不來,教師再予以必要的啟示)。

師:在y= f(x)中與y= f -1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個(gè)集合,y也是如此),但地位不同(前者x是自變量,y是函數(shù)值;后者y是自變量,x是函數(shù)值。)

在y= f(x)中與y= f –1(x)中的x都是自變量,y都是函數(shù)值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

由此,請(qǐng)同學(xué)們談一下,函數(shù)y= f(x)與它的反函數(shù)y= f –1(x)兩者之間,定義域、值域存在什么關(guān)系呢?

生:(學(xué)生作答,教師板書)函數(shù)的定義域,值域分別是它的反函數(shù)的值域、定義域。

師:從反函數(shù)的概念可知:函數(shù)y= f (x)與y= f –1(x)互為反函數(shù)。

從反函數(shù)的概念我們還可以知道,求函數(shù)的反函數(shù)的方法步驟為:

(1)由y= f (x)解出x= f –1(y),即把x用y表示出;

(2)將x= f –1(y)改寫成y= f –1(x),即對(duì)調(diào)x= f –1(y)中的x、y。

(3)指出反函數(shù)的定義域。

下面請(qǐng)同學(xué)自看例1

(II)課堂練習(xí) 課本P68練習(xí)1、2、3、4。

(III)課時(shí)小結(jié)

本節(jié)課我們學(xué)習(xí)了反函數(shù)的概念,從中知道了怎樣的映射確定的函數(shù)才有反函數(shù)并求函數(shù)的反函數(shù)的方法步驟,大家要熟練掌握。

(IV)課后作業(yè)

一、課本P69習(xí)題2.4 1、2。

二、預(yù)習(xí):互為反函數(shù)的函數(shù)圖象間的關(guān)系,親自動(dòng)手作題中要求作的圖象。

板書設(shè)計(jì)

課題: 求反函數(shù)的方法步驟:

定義:(幻燈片)

注意: 小結(jié)

一一映射確定的

函數(shù)才有反函數(shù)

函數(shù)與它的反函

數(shù)定義域、值域的關(guān)系。

高三數(shù)學(xué)教案模板范文篇11

教學(xué)目標(biāo):

1、知識(shí)與技能:

1)了解導(dǎo)數(shù)概念的實(shí)際背景;

2)理解導(dǎo)數(shù)的概念、掌握簡(jiǎn)單函數(shù)導(dǎo)數(shù)符號(hào)表示和基本導(dǎo)數(shù)求解方法;

3)理解導(dǎo)數(shù)的幾何意義;

4)能進(jìn)行簡(jiǎn)單的導(dǎo)數(shù)四則運(yùn)算。

2、過程與方法:

先理解導(dǎo)數(shù)概念背景,培養(yǎng)觀察問題的能力;再掌握定義和幾何意義,培養(yǎng)轉(zhuǎn)化問題的能力;最后求切線方程及運(yùn)算,培養(yǎng)解決問題的能力。

3、情態(tài)及價(jià)值觀;

讓學(xué)生感受數(shù)學(xué)與生活之間的聯(lián)系,體會(huì)數(shù)學(xué)的美,激發(fā)學(xué)生學(xué)習(xí)興趣與主動(dòng)性。

教學(xué)重點(diǎn):

1、導(dǎo)數(shù)的求解方法和過程;

2、導(dǎo)數(shù)公式及運(yùn)算法則的熟練運(yùn)用。

教學(xué)難點(diǎn):

1、導(dǎo)數(shù)概念及其幾何意義的理解;

2、數(shù)形結(jié)合思想的靈活運(yùn)用。

教學(xué)課型:復(fù)習(xí)課(高三一輪)

教學(xué)課時(shí):約1課時(shí)

高三數(shù)學(xué)教案模板范文篇12

教學(xué)目標(biāo)

(1)掌握向量的有關(guān)概念:向量及其表示法、向量的模、向量的相等、零向量;

(2)理解并掌握復(fù)數(shù)集、復(fù)平面內(nèi)的點(diǎn)的集合、復(fù)平面內(nèi)以原點(diǎn)為起點(diǎn)的向量集合之間的一一對(duì)應(yīng)關(guān)系;

(3)掌握復(fù)數(shù)的模的定義及其幾何意義;

(4)通過學(xué)習(xí),培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想;

(5)通過本節(jié)內(nèi)容的學(xué)習(xí),培養(yǎng)學(xué)生的觀察能力、分析能力,幫助學(xué)生逐步形成科學(xué)的思維習(xí)慣和方法

教學(xué)建議

一、知識(shí)結(jié)構(gòu)

本節(jié)內(nèi)容首先從物理中所遇到的一些矢量出發(fā)引出向量的概念,介紹了向量及其表示法、向量的模、向量的相等、零向量的概念,接著介紹了復(fù)數(shù)集與復(fù)平面內(nèi)以原點(diǎn)為起點(diǎn)的向量集合之間的一一對(duì)應(yīng)關(guān)系,指出了復(fù)數(shù)的模的定義及其計(jì)算公式

二、重點(diǎn)、難點(diǎn)分析

本節(jié)的重點(diǎn)是復(fù)數(shù)與復(fù)平面的向量的一一對(duì)應(yīng)關(guān)系的理解;難點(diǎn)是復(fù)數(shù)模的概念復(fù)數(shù)可以用向量表示,二者的對(duì)應(yīng)關(guān)系為什么只能說復(fù)數(shù)集與以原點(diǎn)為起點(diǎn)的向量的集合一一對(duì)應(yīng)關(guān)系,而不能說與復(fù)平面內(nèi)的向量一一對(duì)應(yīng),對(duì)這一點(diǎn)的理解要加以重視在復(fù)數(shù)向量的表示中,從復(fù)數(shù)集與復(fù)平面內(nèi)的點(diǎn)以及以原點(diǎn)為起點(diǎn)的向量之間的一一對(duì)應(yīng)關(guān)系是本節(jié)教學(xué)的難點(diǎn)復(fù)數(shù)模的概念是一個(gè)難點(diǎn),首先要理解復(fù)數(shù)的絕對(duì)值與實(shí)數(shù)絕對(duì)值定義的一致性質(zhì),其次要理解它的幾何意義是表示向量的長(zhǎng)度,也就是復(fù)平面上的點(diǎn)到原點(diǎn)的距離

三、教學(xué)建議

1在學(xué)習(xí)新課之前一定要復(fù)習(xí)舊知識(shí),包括實(shí)數(shù)的絕對(duì)值及幾何意義,復(fù)數(shù)的有關(guān)概念、現(xiàn)行高中物理課本中的有關(guān)矢量知識(shí)等,特別是對(duì)于基礎(chǔ)較差的學(xué)生,這一環(huán)節(jié)不可忽視

2理解并掌握復(fù)數(shù)集、復(fù)平面內(nèi)的點(diǎn)集、復(fù)平面內(nèi)以原點(diǎn)為起點(diǎn)的向量集合三者之間的關(guān)系

如圖所示,建立復(fù)平面以后,復(fù)數(shù) 與復(fù)平面內(nèi)的點(diǎn)形成—一對(duì)應(yīng)關(guān)系,而點(diǎn)又與復(fù)平面的向量構(gòu)成—一對(duì)應(yīng)關(guān)系因此,復(fù)數(shù)集與復(fù)平面的以為起點(diǎn),以為終點(diǎn)的向量集 形成—一對(duì)應(yīng)關(guān)系因此,我們常把復(fù)數(shù)說成點(diǎn)Z或說成向量點(diǎn)、向量是復(fù)數(shù)的另外兩種表示形式,它們都是復(fù)數(shù)的幾何表示

相等的向量對(duì)應(yīng)的是同一個(gè)復(fù)數(shù),復(fù)平面內(nèi)與向量 相等的向量有無窮多個(gè),所以復(fù)數(shù)集不能與復(fù)平面上所有的向量相成—一對(duì)應(yīng)關(guān)系復(fù)數(shù)集只能與復(fù)平面上以原點(diǎn)為起點(diǎn)的向量集合構(gòu)成—一對(duì)應(yīng)關(guān)系

2

這種對(duì)應(yīng)關(guān)系的建立,為我們用解析幾何方法解決復(fù)數(shù)問題,或用復(fù)數(shù)方法解決幾何問題創(chuàng)造了條件

3向量的模,又叫向量的絕對(duì)值,也就是其有向線段的長(zhǎng)度它的計(jì)算公式是 ,當(dāng)實(shí)部為零時(shí),根據(jù)上面復(fù)數(shù)的模的公式與以前關(guān)于實(shí)數(shù)絕對(duì)值及算術(shù)平方根的規(guī)定一致這些內(nèi)容必須使學(xué)生在理解的基礎(chǔ)上牢固地掌握

4講解教材第182頁上例2的第(1)小題建議在講解教材第182頁上例2的第(1)小題時(shí)如果結(jié)合提問 的圖形,可以幫助學(xué)生正確理解教材中的“圓”是指曲線而不是指圓面(曲線所包圍的平面部分)對(duì)于倒2的第(2)小題的圖形,畫圖時(shí)周界(兩個(gè)同心圓)都應(yīng)畫成虛線

高三數(shù)學(xué)教案模板范文篇13

一、教材分析

1、本節(jié)內(nèi)容在全書及章節(jié)的地位:《函數(shù)的單調(diào)性》是必修1第一章第 3 節(jié),

高中數(shù)學(xué)《函數(shù)的單調(diào)性》說課稿教案模板

是高考的重點(diǎn)考查內(nèi)容之一,是函數(shù)的一個(gè)重要性質(zhì),在比較幾個(gè)數(shù)的大小、求函數(shù)值域、對(duì)函數(shù)的定性分析以及與其他知識(shí)的綜合上都有廣泛的應(yīng)用。通過對(duì)這一節(jié)課的學(xué)習(xí),可以讓學(xué)生加深對(duì)函數(shù)的本質(zhì)認(rèn)識(shí)。也為今后研究具體函數(shù)的性質(zhì)作了充分準(zhǔn)備,起到承上啟下的作用。

2、教學(xué)目標(biāo):根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知水平我制定如下教學(xué)目標(biāo):

基礎(chǔ)知識(shí)目標(biāo):了解能用文字語言和符號(hào)語言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;明確掌握利用函數(shù)單調(diào)性定義證明函數(shù)單調(diào)性的方法與步驟;并能用定義證明某些簡(jiǎn)單函數(shù)的單調(diào)性;

能力訓(xùn)練目標(biāo):培養(yǎng)學(xué)生嚴(yán)密的.邏輯思維能力、用運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,

情感目標(biāo):讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習(xí)的樂趣。

重點(diǎn):形成增(減)函數(shù)的形式化定義。

難點(diǎn)。形成增減函數(shù)概念的過程中,如何從圖像升降的直觀認(rèn)識(shí)過渡到函數(shù)增減數(shù)學(xué)符號(hào)語言表述;用定義證明函數(shù)的單調(diào)性。

為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>

二、 教法

在教學(xué)中我使用啟發(fā)式教學(xué),在教師的引導(dǎo)下,創(chuàng)設(shè)情景,通過開放性問題的設(shè)置來啟發(fā)學(xué)生思考,在思考中體會(huì)數(shù)學(xué)概念形成過程中所蘊(yùn)涵的數(shù)學(xué)方法,

三、學(xué)法

倡導(dǎo)學(xué)生主動(dòng)參與、樂于探究、勤于動(dòng)手,培養(yǎng)學(xué)生搜集和處理信息的能力、獲取新知識(shí)的能力、分析和解決問題的能力以及交流與合作的能力”。數(shù)學(xué)作為基礎(chǔ)教育的核心課程之一,轉(zhuǎn)變學(xué)生數(shù)學(xué)學(xué)習(xí)方式,不僅有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),而且有利于促進(jìn)學(xué)生整體學(xué)習(xí)方式的轉(zhuǎn)變。我以建構(gòu)主義理論為指導(dǎo),輔以多媒體手段,采用著重于學(xué)生探索研究的啟發(fā)式教學(xué)方法,結(jié)合師生共同討論、歸納。在課堂結(jié)構(gòu)上,我根據(jù)學(xué)生的認(rèn)知水平,我設(shè)計(jì)了 ①創(chuàng)設(shè)情境——引入概念②觀察歸納——形成概念③討論研究——深化概念④即時(shí)訓(xùn)練—鞏固新知⑤總結(jié)反思——提高認(rèn)識(shí)⑥任務(wù)后延——自主探究六個(gè)層次的學(xué)法,

它們環(huán)環(huán)相扣,層層深入,從而順利完成教學(xué)目標(biāo)。接下來,我再具體談一談這堂課的教學(xué)過程:

四、 教學(xué)程序及設(shè)想

(一) 創(chuàng)設(shè)情境——引入概念

通過設(shè)置問題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點(diǎn)撥、啟發(fā)、引導(dǎo)為教師職責(zé)。

1、由具體的數(shù)列實(shí)例引入:

觀察下列各個(gè)函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:隨x的增大,y的值有什么變化。

高三數(shù)學(xué)教案模板范文篇14

教學(xué)目標(biāo)

進(jìn)一步熟悉正、余弦定理內(nèi)容,能熟練運(yùn)用余弦定理、正弦定理解答有關(guān)問題,如判斷三角形的形狀,證明三角形中的三角恒等式.

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):熟練運(yùn)用定理.

教學(xué)難點(diǎn):應(yīng)用正、余弦定理進(jìn)行邊角關(guān)系的相互轉(zhuǎn)化.

教學(xué)過程

一、復(fù)習(xí)準(zhǔn)備:

1.寫出正弦定理、余弦定理及推論等公式.

2.討論各公式所求解的三角形類型.

二、講授新課:

1.教學(xué)三角形的解的討論:

①出示例1:在△ABC中,已知下列條件,解三角形.

分兩組練習(xí)→討論:解的個(gè)數(shù)情況為何會(huì)發(fā)生變化?

②用如下圖示分析解的情況.(A為銳角時(shí))

練習(xí):在△ABC中,已知下列條件,判斷三角形的解的情況.

2.教學(xué)正弦定理與余弦定理的活用:

①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.

分析:已知條件可以如何轉(zhuǎn)化?→引入?yún)?shù)k,設(shè)三邊后利用余弦定理求角.

②出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型.

分析:由三角形的什么知識(shí)可以判別?→求角余弦,由符號(hào)進(jìn)行判斷

③出示例4:已知△ABC中,試判斷△ABC的形狀.

分析:如何將邊角關(guān)系中的邊化為角?→再思考:又如何將角化為邊?

3.小結(jié):三角形解的情況的討論;判斷三角形類型;邊角關(guān)系如何互化.

高三數(shù)學(xué)教案模板范文篇15

高中數(shù)學(xué)命題教案

命題及其關(guān)系

M

1.1.1命題及其關(guān)系

一、課前小練:閱讀下列語句,你能判斷它們的真假嗎?

(1)矩形的對(duì)角線相等;

(2)3 ;

(3)3 嗎?

(4)8是24的約數(shù);

(5)兩條直線相交,有且只有一個(gè)交點(diǎn);

(6)他是個(gè)高個(gè)子.

二、新課內(nèi)容:

1.命題的概念:

①命題:可以判斷真假的陳述句叫做命題(proposition).

上述6個(gè)語句中,哪些是命題.

②真命題:判斷為真的語句叫做真命題(true proposition);

假命題:判斷為假的語句叫做假命題(false proposition).

上述5個(gè)命題中,哪些為真命題?哪些為假命題?

③例1:判斷下列語句中哪些是命題?是真命題還是假命題?

(1)空集是任何集合的子集;

(2)若整數(shù) 是素?cái)?shù),則 是奇數(shù);

(3)2小于或等于2;

(4)對(duì)數(shù)函數(shù)是增函數(shù)嗎?

(5) ;

(6)平面內(nèi)不相交的兩條直線一定平行;

(7)明天下雨.

(學(xué)生自練 個(gè)別回答 教師點(diǎn)評(píng))

④探究:學(xué)生自我舉出一些命題,并判斷它們的真假.

2. 將一個(gè)命題改寫成“若 ,則 ”的形式:

三、練習(xí):教材 P4 1、2、3

四、作業(yè):

1、教材P8第1題

2、作業(yè)本1-10

五、課后反思

命題教案

課題1.1.1命題及其關(guān)系(一)課型新授課

目標(biāo)

1)知識(shí)方法目標(biāo)

了解命題的概念,

2)能力目標(biāo)

會(huì)判斷一個(gè)命題的真假,并會(huì)將一個(gè)命題改寫成“若 ,則 ”的形式.

重點(diǎn)

難點(diǎn)

1)重點(diǎn):命題的改寫

2)難點(diǎn):命題概念的理解,命題的條件與結(jié)論區(qū)分

教法與學(xué)法

教法:

教學(xué)過程備注

1.課題引入

(創(chuàng)設(shè)情景)

閱讀下列語句,你能判斷它們的真假嗎?

(1)矩形的對(duì)角線相等;

(2)3 ;

(3)3 嗎?

(4)8是24的約數(shù);

(5)兩條直線相交,有且只有一個(gè)交點(diǎn);

(6)他是個(gè)高個(gè)子.

2.問題探究

1)難點(diǎn)突破

2)探究方式

3)探究步驟

4)高潮設(shè)計(jì)

1.命題的概念:

①命題:可以判斷真假的陳述句叫做命題(proposition).

上述6個(gè)語句中,(1)(2)(4)(5)(6)是命題.

②真命題:判斷為真的語句叫做真命題(true proposition);

假命題:判斷為假的語句叫做假命題(false proposition).

上述5個(gè)命題中,(2)是假命題,其它4個(gè)都是真命題.

③例1:判斷下列語句中哪些是命題?是真命題還是假命題?

(1)空集是任何集合的子集;

(2)若整數(shù) 是素?cái)?shù),則 是奇數(shù);

(3)2小于或等于2;

(4)對(duì)數(shù)函數(shù)是增函數(shù)嗎?

(5) ;

(6)平面內(nèi)不相交的兩條直線一定平行;

(7)明天下雨.

(學(xué)生自練 個(gè)別回答 教師點(diǎn)評(píng))

④探究:學(xué)生自我舉出一些命題,并判斷它們的真假.

2. 將一個(gè)命題改寫成“若 ,則 ”的形式:

①例1中的(2)就是一個(gè)“若 ,則 ”的命題形式,我們把其中的 叫做命題的'條件, 叫做命題的結(jié)論.

②試將例1中的命題(6)改寫成“若 ,則 ”的形式.

③例2:將下列命題改寫成“若 ,則 ”的形式.

(1)兩條直線相交有且只有一個(gè)交點(diǎn);

(2)對(duì)頂角相等;

(3)全等的兩個(gè)三角形面積也相等.

(學(xué)生自練 個(gè)別回答 教師點(diǎn)評(píng))

3. 小結(jié):命題概念的理解,會(huì)判斷一個(gè)命題的真假,并會(huì)將命題改寫“若 ,則 ”的形式.

引導(dǎo)學(xué)生歸納出命題的概念,強(qiáng)調(diào)判斷一個(gè)語句是不是命題的兩個(gè)關(guān)鍵點(diǎn):是否符合“是陳述句”和“可以判斷真假”。

通過例子引導(dǎo)學(xué)生辨別命題,區(qū)分命題的條件和結(jié)論。改寫為“若 ,則 ”的形式,為后續(xù)的學(xué)習(xí)打好基礎(chǔ)。

3.練習(xí)提高1. 練習(xí):教材 P4 1、2、3

師生互動(dòng)

4.作業(yè)設(shè)計(jì)

作業(yè):

1、教材P8第1題

2、作業(yè)本1-10

5.課后反思

本節(jié)課是一堂概念課,比較枯燥,在教學(xué)時(shí)應(yīng)充分調(diào)動(dòng)學(xué)生的積極性,比如引例中的“他是個(gè)高個(gè)子.”例1中的“(7)明天下雨.”等比較有趣的生活問題,和學(xué)生有充分的語言交流,在一問一答中,引導(dǎo)學(xué)生完成本節(jié)課的學(xué)習(xí)。

506271