作為一名教師,編寫(xiě)教案是必不可少的,借助教案可以更好地組織教學(xué)活動(dòng)??靵?lái)參考教案是怎么寫(xiě)的吧!下面是小編整理的《有理數(shù)的加法》教案,歡迎閱讀與收藏。
教學(xué)目標(biāo)
1、 通過(guò)學(xué)習(xí),能感受到數(shù)學(xué)知識(shí)來(lái)源于生活又可應(yīng)用于實(shí)際生活,激發(fā)學(xué)習(xí)的興趣。
2.通過(guò)探索,能歸納總結(jié)出有理數(shù)加法法則,理解有理數(shù)加法的意義滲透分類思想。
3.掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)加法運(yùn)算。
學(xué)習(xí)重點(diǎn)、難點(diǎn)
重點(diǎn):了解有理數(shù)加法的意義,會(huì)根據(jù)有理數(shù)加法法則進(jìn)行有理數(shù)加法計(jì)算;
難點(diǎn):異號(hào)兩數(shù)如何相加的法則。
學(xué)習(xí)過(guò)程
一、 預(yù)習(xí)自學(xué):
1、蛋糕店上半年掙5萬(wàn),下半年掙3萬(wàn),請(qǐng)問(wèn)一年共掙多少錢(qián)?
2、蛋糕店上半年賠5萬(wàn),下半年賠3萬(wàn),請(qǐng)問(wèn)一年共掙多少錢(qián)?
3、蛋糕店上半年掙5萬(wàn),下半年賠3萬(wàn),請(qǐng)問(wèn)一年共掙多少錢(qián)?
4、蛋糕店上半年賠5萬(wàn),下半年掙3萬(wàn),請(qǐng)問(wèn)一年共掙多少錢(qián)?
5、蛋糕店上半年掙5萬(wàn),下半年賠5萬(wàn),請(qǐng)問(wèn)一年共掙多少錢(qián)?
6、蛋糕店上半年賠5萬(wàn),下半年掙0萬(wàn),請(qǐng)問(wèn)一年共掙多少錢(qián)?
請(qǐng)你列式計(jì)算,并引導(dǎo)學(xué)生對(duì)前面的七個(gè)加法運(yùn)算進(jìn)行合理的分類探討:和的符號(hào)怎樣確定?和的絕對(duì)值怎樣確定?(小組討論展示)
二、 教師點(diǎn)撥
知識(shí)點(diǎn)一:引導(dǎo)學(xué)生對(duì)前面的七個(gè)加法運(yùn)算進(jìn)行合理的分類
同號(hào)兩數(shù)相加: (+5)+(+3)= ______.(-5)+(-3)= ______
異號(hào)兩數(shù)相加:(+5)+(-3)= ______;(-5)+(+3)= ______;
(+5)+(-5)=______
一數(shù)與零相加: (-5)+0=______;
知識(shí)點(diǎn)二:探討:和的符號(hào)怎樣確定?和的絕對(duì)值怎樣確定?
結(jié)論:有理數(shù)加法法則:
1.同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
2.絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。互為相反數(shù)的兩個(gè)數(shù)相加得0。
3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
三.例題精講;例1(學(xué)生自學(xué),教師示范。注意解題步驟)
四、課堂練習(xí);36頁(yè)隨堂練習(xí)與習(xí)題(小組展示交流)
五、當(dāng)堂檢測(cè);
1.用生活中的事例說(shuō)明下列算是的意義,并計(jì)算出結(jié)果:
(-2)+(-3);(-3)+2
2.有理數(shù)加法法則:
絕對(duì)值不相等的兩數(shù)相加,取絕對(duì)值的加數(shù)的符號(hào),并用較大的絕對(duì)值較小的絕對(duì)值。 互為相反數(shù)的兩個(gè)數(shù)相加得。
3.計(jì)算:(+15)+(-7);(-39)+(-21);
(-37)+22;(-3)+(+3)
【目標(biāo)預(yù)覽】
知識(shí)技能:1、通過(guò)實(shí)例,了解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能運(yùn)用法則進(jìn)行計(jì)算;
2、在有理數(shù)加法法則的教學(xué)過(guò)程中,培養(yǎng)觀察、比較、歸納及運(yùn)算能力。 數(shù)學(xué)思考:1、正確地進(jìn)行有理數(shù)的加法運(yùn)算;
2、用數(shù)形結(jié)合的思想方法得出有理數(shù)加法法則。
解決問(wèn)題:能運(yùn)用有理數(shù)加法解決實(shí)際問(wèn)題。
情感態(tài)度:通過(guò)師生活動(dòng)、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過(guò)程中來(lái)。
【教學(xué)重點(diǎn)和難點(diǎn)】
重點(diǎn):了解有理數(shù)加法的意義,會(huì)根據(jù)有理數(shù)加法法則進(jìn)行有理數(shù)加法計(jì)算; 難點(diǎn):異號(hào)兩數(shù)如何相加的法則。
【情景設(shè)計(jì)】
我們來(lái)看一個(gè)大家熟悉的實(shí)際問(wèn)題:
足球比賽中進(jìn)球個(gè)數(shù)與失球個(gè)數(shù)是相反意義的量.若我們規(guī)定進(jìn)球?yàn)椤罢?,失球?yàn)椤柏?fù)”。比如,進(jìn)3個(gè)球記為正數(shù):+3,失2個(gè)球記為負(fù)數(shù):-2。它們的和為凈勝球數(shù):(+3)+(-2)學(xué)校足球隊(duì)在一場(chǎng)比賽中的勝負(fù)情況如下:
(1)紅隊(duì)進(jìn)了3個(gè)球,失了2個(gè)球,那么凈勝球數(shù)是:(+3)+(-2)
(2)藍(lán)隊(duì)進(jìn)了1個(gè)球,失了1個(gè)球,那么凈勝球數(shù)是:(+1)+(-1)
這里,就需要用到正數(shù)與負(fù)數(shù)的加法。
下面,我們利用數(shù)軸一起來(lái)討論有理數(shù)的加法規(guī)律。
【探求新知】
一個(gè)物體作左右運(yùn)動(dòng),我們規(guī)定向左為負(fù),向右為正。向右運(yùn)動(dòng)5m,可以記作多少?向左運(yùn)動(dòng)5m呢?
(1)如果物體先向右運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢? 利用數(shù)軸演示(如圖1),把原點(diǎn)假設(shè)為運(yùn)動(dòng)起點(diǎn)。
兩次運(yùn)動(dòng)后物體從起點(diǎn)向右運(yùn)動(dòng)了8m。寫(xiě)成算式是:5+3=8①
利用數(shù)軸依次討論如下問(wèn)題,引導(dǎo)學(xué)生自己尋找算式的答案:
(2)如果物體先向左運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
(3)如果物體先向右運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
(4)如果物體先向左運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
(5)如果物體先向左運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)5m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
(6)如果物體先向右運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)5m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
(7)如果物體第一分鐘向右(或向左)運(yùn)動(dòng)5m,第二分鐘原地不動(dòng),那么兩次運(yùn)動(dòng)后總的結(jié)果是多少呢?
總結(jié):依次可得
(2)(-5)+(-3)=-8②
(3)5+(-3)=2③
(4)3+(-5)=-2④
(5)5+(-5)=0⑤
(6)(-5)+5=0⑥
(7)5+0=5或(-5)+0=-5⑦
觀察上述7個(gè)算式,自己歸納出有理數(shù)加法法則:
1.同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
2.絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)的兩個(gè)數(shù)相加得0;
3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
【范例精析】
例1計(jì)算下列算式的結(jié)果,并說(shuō)明理由:
(1)(+4)+(+7);(2)(-4)+(-7);
(3)(+4)+(-7);(4)(+9)+(-4);
(5)(+4)+(-4);(6)(+9)+(-2);
(7)(-9)+(+2);(8)(-9)+0;
(9)0+(+2);(10)0+0.
學(xué)生逐題口答后,教師小結(jié):
進(jìn)行有理數(shù)加法,先要判斷兩個(gè)加數(shù)是同號(hào)還是異號(hào),有一個(gè)加數(shù)是否為零;再根據(jù)兩個(gè)加數(shù)符號(hào)的具體情況,選用某一條加法法則.進(jìn)行計(jì)算時(shí),通常應(yīng)該先確定“和”的符號(hào),再計(jì)算“和”的絕對(duì)值.
解:(1)(-3)+(-9) (兩個(gè)加數(shù)同號(hào),用加法法則的第2條計(jì)算)
=-(3+9)(和取負(fù)號(hào),把絕對(duì)值相加)
=-12.
例3 足球循環(huán)比賽中,紅隊(duì)勝黃隊(duì)4﹕1,黃隊(duì)勝藍(lán)隊(duì)1﹕0,藍(lán)隊(duì)勝紅隊(duì)1﹕0,計(jì)算各隊(duì)的凈勝球數(shù)。
解:我們規(guī)定進(jìn)球?yàn)椤罢?,失球?yàn)椤柏?fù)”。它們的和為凈勝球數(shù)。
三場(chǎng)比賽中,紅隊(duì)共進(jìn)4球,失2球,凈勝球數(shù)為(+4)+(-2)=2;
黃隊(duì)共進(jìn)2球,失4球,凈勝球數(shù)為(+2)+(-4)= -2;
藍(lán)隊(duì)共進(jìn)1球,失1球,凈勝球數(shù)為(+1)+(-1)=0;
【一試身手】
下面請(qǐng)同學(xué)們計(jì)算下列各題:
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
全班學(xué)生書(shū)面練,四位學(xué)生板演,教師對(duì)學(xué)生板演進(jìn)行講評(píng).
【總結(jié)陳詞】
1、這節(jié)課我們從實(shí)例出發(fā),經(jīng)過(guò)比較、歸納,得出了有理數(shù)加法的法則.今后我們經(jīng)常要用類似的思想方法研究其他問(wèn)題。
2、應(yīng)用有理數(shù)加法法則進(jìn)行計(jì)算時(shí),要同時(shí)注意確定“和”的符號(hào),計(jì)算“和”的絕對(duì)值兩件事。
【實(shí)戰(zhàn)操練】
1.計(jì)算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);
(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);
(7)33+48;(8)(-56)+37.
2.計(jì)算:
(1)(-0.9)+(-2.7);(2)3.8+(-8.4);
(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.
3.計(jì)算:
4*.用“>”或“<”號(hào)填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0|a|>|b|,那么a+b ______0.
5*.分別根據(jù)下列條件,利用|a|與|b|表示a與b的和:
(1)a>0,b>0;(2) a<0,b<0;
(3)a>0,b<0|a|>|b|;(4)a>0,b<0|a|<|b|。
標(biāo)簽: #有理數(shù)的加法教案 #教學(xué)方法 #教材分析 #數(shù)形結(jié)合
【教學(xué)目標(biāo)】
1.理解有理數(shù)加法的實(shí)際意義;
2.會(huì)作簡(jiǎn)單的加法計(jì)算;
3.感受到原來(lái)用減法算的問(wèn)題現(xiàn)在也可以用加法算。
【對(duì)話探索設(shè)計(jì)】
〖探索1〗
(1)某倉(cāng)庫(kù)第一天運(yùn)進(jìn)300噸化肥,第二天又運(yùn)進(jìn)200噸化肥,兩天一共運(yùn)進(jìn)多少噸?
(2)某倉(cāng)庫(kù)第一天運(yùn)進(jìn)300噸化肥,第二天運(yùn)出200噸化肥,兩天總的結(jié)果一共運(yùn)進(jìn)多少噸?
(3)某倉(cāng)庫(kù)第一天運(yùn)進(jìn)300噸化肥,第二天又運(yùn)進(jìn)-200噸化肥,兩天一共運(yùn)進(jìn)多少噸?
(4)把第(3)題的算式列為300+(-200),有道理嗎?
(5)某倉(cāng)庫(kù)第一天運(yùn)進(jìn)a噸化肥,第二天又運(yùn)進(jìn)b噸化肥,兩天一共運(yùn)進(jìn)多少噸?
〖探索2〗
如果物體先向右運(yùn)動(dòng),再向右運(yùn)動(dòng),那么兩次運(yùn)動(dòng)后總的結(jié)果是什么?
假設(shè)原點(diǎn)為運(yùn)動(dòng)起點(diǎn),用下面的數(shù)軸檢驗(yàn)?zāi)愕拇鸢浮?/p>
在足球比賽中,通常把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫做凈勝球數(shù)。若某場(chǎng)比賽紅隊(duì)勝黃隊(duì)5:2(即紅隊(duì)進(jìn)5個(gè)球,失2個(gè)球),紅隊(duì)凈勝幾個(gè)球?
〖小游戲〗
(請(qǐng)一位同學(xué)到黑板前)前進(jìn)5步,又前進(jìn)-3步,那么兩次運(yùn)動(dòng)后總的結(jié)果是什么?若是后退-1步,又后退3步呢?
〖練習(xí)〗
1.登山隊(duì)員第一天向上攀登,第二天又向上攀登(天氣惡劣!),兩天一共向上攀登多少米?
2.第一天營(yíng)業(yè)贏利90元,第二天虧本80元,兩天一共贏利多少元?
〖補(bǔ)充作業(yè)〗
1.分別用加法和減法的算式表示下面每小題的結(jié)果(能求出得數(shù)最好):
(1)溫度由下降;(2)倉(cāng)庫(kù)原有化肥200t,又運(yùn)進(jìn)-120t;
(3)標(biāo)準(zhǔn)重量是,超過(guò)標(biāo)準(zhǔn)重量;(4)第一天盈利-300元,第二天盈利100元。
2.借助數(shù)軸用加法計(jì)算:
(1)前進(jìn),又前進(jìn),那么兩次運(yùn)動(dòng)后總的結(jié)果是什么?
(2)上午8時(shí)的氣溫是,下午5時(shí)的氣溫比上午8時(shí)下降,下午5時(shí)的氣溫是多少?
3.某潛水員先潛入水下,他的位置記為。然后又上升,這時(shí)他處在什么位置?
今天我說(shuō)課的題目是“有理數(shù)的加法(一)”,“有理數(shù)的加法”說(shuō)課教案、課堂設(shè)計(jì)及教后反思。本節(jié)課選自華東師范大學(xué)出版社出版的《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)》七年級(jí)(上)。這一節(jié)課是本冊(cè)書(shū)第二章第六節(jié)第一課時(shí)的內(nèi)容。下面我就從以下四個(gè)方面一一教材分析、教材處理、教學(xué)方法和教學(xué)手段、教學(xué)過(guò)程的設(shè)計(jì)向大家介紹一下我對(duì)本節(jié)課的理解與設(shè)計(jì)。
一、教材分析
分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。首先來(lái)看一下本節(jié)課在教材中的地位和作用。
1、有理數(shù)的加法在整個(gè)知識(shí)系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí),增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的理解和解決實(shí)際問(wèn)題的能力。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運(yùn)算的一種,它是有理數(shù)運(yùn)算的重要基礎(chǔ)之一,它是整個(gè)初中代數(shù)的一個(gè)基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實(shí)數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、研究函數(shù)等內(nèi)容的學(xué)習(xí)。
2、就第二章而言,有理數(shù)的加法是本章的一個(gè)重點(diǎn)。有理數(shù)這一章分為兩大部分----有理數(shù)的意義和有理數(shù)的運(yùn)算,有理數(shù)的意義是有理數(shù)運(yùn)算的基礎(chǔ),有理數(shù)的混合運(yùn)算是這一章的難點(diǎn),但混合運(yùn)算是以各種基本運(yùn)算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運(yùn)算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運(yùn)算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算的思考方式(確定結(jié)果的符合和絕對(duì)值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。
從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。
接下來(lái),介紹本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。(結(jié)合微機(jī)顯示)
教學(xué)大綱是我們確定教學(xué)目標(biāo),重點(diǎn)和難點(diǎn)的依據(jù)。教學(xué)大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運(yùn)用法則進(jìn)行準(zhǔn)確運(yùn)算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。1、知識(shí)目標(biāo)是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進(jìn)行準(zhǔn)確運(yùn)算;(4)滲透數(shù)形結(jié)合的思想。2、能力目標(biāo)是:(1)培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識(shí)的能力;3、德育目標(biāo)是:(1)滲透由特殊到一般的辯證唯物主義思想;(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進(jìn)行的加法運(yùn)算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運(yùn)用是本節(jié)的重點(diǎn)內(nèi)容。因此本節(jié)課的重點(diǎn)是:有理數(shù)加法法則的理解與運(yùn)用。由于本階段的學(xué)生很難把握住事物主要特征:如異號(hào)兩數(shù)、絕對(duì)值不相等的異號(hào)兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對(duì)法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。
二、教材處理
本節(jié)課是在前面學(xué)習(xí)了有理數(shù)的意義的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)很牢固地掌握了正數(shù)、負(fù)數(shù)、數(shù)軸、相反數(shù)、絕對(duì)值等概念,因此我沒(méi)有把時(shí)間過(guò)多地放在復(fù)習(xí)這些舊知識(shí)上,而是利用學(xué)生的好奇心,采用生動(dòng)形象的事例,讓學(xué)生充當(dāng)指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識(shí)。在法則的得出過(guò)程中,我引進(jìn)了現(xiàn)代化的教學(xué)工具微機(jī),讓學(xué)生在微機(jī)演示的一種動(dòng)態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學(xué)生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習(xí),通過(guò)書(shū)上的基本練習(xí)達(dá)到訓(xùn)練雙基的目的,通過(guò)變式練習(xí)達(dá)到發(fā)展智力、提高能力的目的。這些我將在教學(xué)過(guò)程的設(shè)計(jì)中具體體現(xiàn)。而且在做練習(xí)的過(guò)程中讓學(xué)生互相提問(wèn),使課堂在學(xué)生的參與下積極有序的進(jìn)行。
三、教學(xué)方法和數(shù)學(xué)孚段
在教學(xué)過(guò)程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位。本節(jié)是新課內(nèi)容的學(xué)習(xí),教學(xué)過(guò)程中盡力引導(dǎo)學(xué)生成為知識(shí)的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問(wèn)題結(jié)合起來(lái),為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動(dòng)情況,使其在教學(xué)過(guò)程中在掌握知識(shí)同時(shí)、發(fā)展智力、受到教育。
四、教學(xué)過(guò)程的設(shè)計(jì)。
1、引入:再課堂的引入上,開(kāi)始我本打算選擇教材上的例子,但是它過(guò)于簡(jiǎn)單。并且不宜于引起學(xué)生的注意,所以我選擇了學(xué)生們感興趣的軍事問(wèn)題,讓學(xué)生在充當(dāng)指揮官的同時(shí),有一種解決問(wèn)題的成就感,從而使學(xué)生積極主動(dòng)的學(xué)習(xí),并且營(yíng)造了良好的學(xué)習(xí)氛圍。
2、探索規(guī)律:法則的得出重要體現(xiàn)知識(shí)的發(fā)生,發(fā)展,形成過(guò)程。我通過(guò)了一個(gè)小人在坐標(biāo)軸上來(lái)回的移動(dòng),使學(xué)生在小人的移動(dòng)過(guò)程中體會(huì)兩個(gè)數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學(xué)手段,學(xué)生能夠全副身心的投入到思考問(wèn)題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識(shí)和技能的全過(guò)程。最后由學(xué)生對(duì)規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出有理數(shù)的加法法則。
3、鞏固練習(xí):再習(xí)題的配備上,我注意了學(xué)生的思維是一個(gè)循序漸進(jìn)的過(guò)程,所以習(xí)題的配備由難而易,使學(xué)生在練習(xí)的過(guò)程中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調(diào)動(dòng)學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問(wèn)題。
4、歸納總結(jié):歸納總結(jié)由學(xué)生完成,并且做適當(dāng)?shù)难a(bǔ)充。最后教師對(duì)本節(jié)的課進(jìn)行說(shuō)明。
以上是我對(duì)本節(jié)課的理解和設(shè)計(jì)。希望各位老師批評(píng)指正,以達(dá)到提高個(gè)人教學(xué)能力的目的。
課堂設(shè)計(jì)及課后反思
我9月19號(hào)在阿城市第五中學(xué)上了一堂數(shù)學(xué)公開(kāi)課,由于得到通知的時(shí)間比較倉(cāng)促,所以準(zhǔn)備的不算充分。在各個(gè)方面一定存在著疏漏和缺陷,在這里請(qǐng)大家多多指教。我主要從以下幾個(gè)方面加以說(shuō)明。
一、問(wèn)題的引入:在問(wèn)題的引入上。新課標(biāo)規(guī)定應(yīng)從實(shí)際情景入手,并且使學(xué)生能夠?qū)?wèn)題產(chǎn)生強(qiáng)烈的求知欲。我采用了敵軍對(duì)我軍進(jìn)行小規(guī)模軍事偵察的問(wèn)題,使學(xué)生處在一個(gè)指揮官的角色。對(duì)問(wèn)題提出解決的辦法,并且在對(duì)學(xué)生提出的各種情況,作出實(shí)際的操作,使學(xué)生明白數(shù)學(xué)在解決實(shí)際問(wèn)題中的應(yīng)用。我感覺(jué)在問(wèn)題的引入上問(wèn)題過(guò)于簡(jiǎn)單,使學(xué)生思考的范圍過(guò)于局限。沒(méi)有出現(xiàn)比較熱烈的學(xué)習(xí)氣氛。所以問(wèn)題的引入應(yīng)加大深度,應(yīng)具有一定的挑戰(zhàn)性。
二、問(wèn)題的探索:在問(wèn)題的探索上,我采用了一個(gè)小人在坐標(biāo)軸上來(lái)回行走,產(chǎn)生一種動(dòng)態(tài)效果,使學(xué)生在充滿好奇心的狀態(tài)下,在老師提供的情景下,在具有較多的時(shí)間和空間的條件下,親身參加探索發(fā)現(xiàn),主動(dòng)的獲取知識(shí)和技能。但在整個(gè)的實(shí)施過(guò)程中出現(xiàn)了一些問(wèn)題,比如:在法則的得出上學(xué)生的總結(jié)出現(xiàn)了一些問(wèn)題,我再處理時(shí)由于怕時(shí)間不夠充裕所以學(xué)生出現(xiàn)的問(wèn)題我給作出了解答,其實(shí)這里應(yīng)由學(xué)生自己來(lái)解決,這樣對(duì)學(xué)生能力的提高非常有幫助。
三、習(xí)題的配備:整個(gè)習(xí)題的配備大致是按從易到難的順序排列的,面向全體學(xué)生,采用多種形式,使不同層次的學(xué)生都有所得,并且采用循序漸進(jìn)的方法,使學(xué)生對(duì)加法法則的理解進(jìn)一步的加強(qiáng)。在講解完例題后,讓學(xué)生互相提問(wèn),以促使學(xué)生積極踴躍的參與到教學(xué)活動(dòng)中來(lái),創(chuàng)造一種輕松的學(xué)習(xí)氛圍。在最后的習(xí)題配備上,讓學(xué)生對(duì)兩個(gè)加數(shù)及和之間的關(guān)系作出判斷,并且對(duì)各種情況作出討論,達(dá)到本節(jié)課的一個(gè)高潮。促使學(xué)生的思路得到進(jìn)一步的加強(qiáng)。但我總體感覺(jué)習(xí)題的量不夠充足,學(xué)生的練習(xí)機(jī)會(huì)較少。
四、總之在整個(gè)教學(xué)過(guò)程的實(shí)施中,出現(xiàn)了一些問(wèn)題,也有一些不盡人意的地方。希望大家批評(píng)指正。
一、教學(xué)目標(biāo)
1.知識(shí)與技能
(1)通過(guò)足球賽中的凈勝球數(shù),使學(xué)生掌握有理數(shù)加法法則,并能運(yùn)用法則進(jìn)行計(jì)算;
(2)在有理數(shù)加法法則的教學(xué)過(guò)程中,注意培養(yǎng)學(xué)生的運(yùn)算能力。
2.過(guò)程與方法
通過(guò)觀察,比較,歸納等得出有理數(shù)加法法則。能運(yùn)用有理數(shù)加法法則解決實(shí)際問(wèn)題。
3.情感態(tài)度與價(jià)值觀
認(rèn)識(shí)到通過(guò)師生合作交流,學(xué)生主動(dòng)叁與探索獲得數(shù)學(xué)知識(shí),從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
二、教學(xué)重難點(diǎn)及關(guān)鍵:
重點(diǎn):會(huì)用有理數(shù)加法法則進(jìn)行運(yùn)算。
難點(diǎn):異號(hào)兩數(shù)相加的法則。
關(guān)鍵:通過(guò)實(shí)例引入,循序漸進(jìn),加強(qiáng)法則的應(yīng)用。
三、教學(xué)方法
發(fā)現(xiàn)法、歸納法、與師生轟動(dòng)緊密結(jié)合。
四、教材分析
“有理數(shù)的加法”是人教版七年級(jí)數(shù)學(xué)上冊(cè)第一章有理數(shù)的第三節(jié)內(nèi)容,本節(jié)內(nèi)容安排四個(gè)課時(shí),本課時(shí)是本節(jié)內(nèi)容的第一課時(shí),本課設(shè)計(jì)主要是通過(guò)球賽中凈勝球數(shù)的實(shí)例來(lái)明確有理數(shù)加法的意義,引入有理數(shù)加法的法則,為今后學(xué)習(xí)“有理數(shù)的減法”做鋪墊。
五、教學(xué)過(guò)程
(一)問(wèn)題與情境
我們已經(jīng)熟悉正數(shù)的運(yùn)算,然而實(shí)際問(wèn)題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,通常把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫作凈勝球數(shù)。章前言中,紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球;藍(lán)隊(duì)進(jìn)1個(gè)球,失1個(gè)球。于是紅隊(duì)的凈勝球?yàn)?+(-2),黃隊(duì)的凈勝球?yàn)?+(-1),這里用到正數(shù)與負(fù)數(shù)的加法。
(二)師生共同探究有理數(shù)加法法則
前面我們學(xué)習(xí)了有關(guān)有理數(shù)的一些基礎(chǔ)知識(shí),從今天起開(kāi)始學(xué)習(xí)有理數(shù)的運(yùn)算。這節(jié)課我們來(lái)研究?jī)蓚€(gè)有理數(shù)的加法。兩個(gè)有理數(shù)相加,有多少種不同的情形?為此,我們來(lái)看一個(gè)大家熟悉的實(shí)際問(wèn)題:
足球比賽中贏球個(gè)數(shù)與輸球個(gè)數(shù)是相反意義的量。若我們規(guī)定贏球?yàn)椤罢?,輸球?yàn)椤柏?fù)”,打平為“0”。比如,贏3球記為+3,輸1球記為-1。學(xué)校足球隊(duì)在一場(chǎng)比賽中的勝負(fù)可能有以下各種不同的情形:
(1)上半場(chǎng)贏了3球,下半場(chǎng)贏了1球,那么全場(chǎng)共贏了4球。也就是(+3)+(+1)=+4。
(2)上半場(chǎng)輸了2球,下半場(chǎng)輸了1球,那么全場(chǎng)共輸了3球。也就是(-2)+(-1)=-3。
現(xiàn)在,請(qǐng)同學(xué)們說(shuō)出其他可能的情形。
答:上半場(chǎng)贏了3球,下半場(chǎng)輸了2球,全場(chǎng)贏了1球,也就是(+3)+(-2)=+1;
上半場(chǎng)輸了3球,下半場(chǎng)贏了2球,全場(chǎng)輸了1球,也就是(-3)+(+2)=-1;
上半場(chǎng)贏了3球下半場(chǎng)不輸不贏,全場(chǎng)仍贏3球,也就是(+3)+0=+3;
上半場(chǎng)輸了2球,下半場(chǎng)兩隊(duì)都沒(méi)有進(jìn)球,全場(chǎng)仍輸2球,也就是(-2)+0=-2;
上半場(chǎng)打平,下半場(chǎng)也打平,全場(chǎng)仍是平局,也就是0+0=0。
上面我們列出了兩個(gè)有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和。但是,要計(jì)算兩個(gè)有理數(shù)相加所得的和,我們總不能一直用這種方法?,F(xiàn)在請(qǐng)同學(xué)們仔細(xì)觀察比較這7個(gè)算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運(yùn)算法則嗎?也就是結(jié)果的符號(hào)怎么定?絕對(duì)值怎么算?
這里,先讓學(xué)生思考,師生交流,再由學(xué)生自己歸納出有理數(shù)加法法則:
1.同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
2.絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)的兩個(gè)數(shù)相加得0;
3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
(三)應(yīng)用舉例 變式練習(xí)&&
例1 口答下列算式的結(jié)果
(1)(+4)+(+3);
(2)(-4)+(-3);
(3)(+4)+(-3);
(4)(+3)+(-4);
(5)(+4)+(-4);
(6)(-3)+0;
(7)0+(+2);
(8)0+0。
學(xué)生逐題口答后,師生共同得出:進(jìn)行有理數(shù)加法,先要判斷兩個(gè)加數(shù)是同號(hào)還是異號(hào),有一個(gè)加數(shù)是否為零;再根據(jù)兩個(gè)加數(shù)符號(hào)的具體情況,選用某一條加法法則。進(jìn)行計(jì)算時(shí),通常應(yīng)該先確定“和”的符號(hào),再計(jì)算“和”的絕對(duì)值。
例2(教科書(shū)的例1)
解:(1)(-3)+(-9) (兩個(gè)加數(shù)同號(hào),用加法法則的第1條計(jì)算)
=-(3+9) (和取負(fù)號(hào),把絕對(duì)值相加)
=-12。
(2)(-4.7)+3.9 (兩個(gè)加數(shù)異號(hào),用加法法則的第2條計(jì)算)
=-(4.7-3.9) (和取負(fù)號(hào),把大的絕對(duì)值減去小的絕對(duì)值)
=-0.8
例3(教科書(shū)的例2)教師在算出紅隊(duì)的凈勝球數(shù)后,學(xué)生自己算黃隊(duì)和藍(lán)隊(duì)的凈勝球數(shù)
下面請(qǐng)同學(xué)們計(jì)算下列各題以及教科書(shū)第23頁(yè)練習(xí)第1與第2題
(1)(-0.9)+(+1.5);
(2)(+2.7)+(-3);
(3)(-1.1)+(-2.9);
學(xué)生書(shū)面練習(xí),四位學(xué)生板演,教師巡視指導(dǎo),學(xué)生交流,師生評(píng)價(jià)。
(四)小結(jié)
1.本節(jié)課你學(xué)到了什么?
2.本節(jié)課你有什么感受?(由學(xué)生自己小結(jié))
(五)作業(yè)設(shè)計(jì)
1.計(jì)算:
(1)(-10)+(+6);
(2)(+12)+(-4);
(3)(-5)+(-7);
(4)(+6)+(+9);
(5)67+(-73);
(6)(-84)+(-59);
(7)-33+48;
(8)(-56)+37。
2.計(jì)算:
(1)(-0.9)+(-2.7);
(2)3.8+(-8.4);
(3)(-0.5)+3;
(4)3.29+1.78;
(5)7+(-3.04);
(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;
(8)(-0.78)+0。
3.用“>”或“<”號(hào)填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0|a|>|b|,那么a+b ______0
教學(xué)目標(biāo):
1、知識(shí)與技能
掌握加法法則,體會(huì)加法法則的意義。
2、過(guò)程與方法
通過(guò)經(jīng)歷有理數(shù)加法運(yùn)算的發(fā)生過(guò)程,體驗(yàn)數(shù)的運(yùn)算探索過(guò)程,感悟有理數(shù)加法運(yùn)算的技巧及運(yùn)算規(guī)律。
通過(guò)運(yùn)算歸納出技巧,感悟絕對(duì)值不相等的異號(hào)兩數(shù)相加的技巧,突破本節(jié)內(nèi)容中的難點(diǎn)問(wèn)題。
3、情感、態(tài)度與價(jià)值觀:
養(yǎng)成積極探索、不斷追求真知的品格。
教學(xué)重點(diǎn)和難點(diǎn):
重點(diǎn):有理數(shù)加法法則;
難點(diǎn):異號(hào)兩數(shù)相加的法則。
教學(xué)安排:
第1課時(shí)。
教學(xué)過(guò)程:
一、師生共同研究有理數(shù)加法法則
我們已經(jīng)熟悉正數(shù)的加法運(yùn)算,然而實(shí)際問(wèn)題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。
例如,足球循環(huán)賽中,可以把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫做凈勝球數(shù)。掌前言中,紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球;藍(lán)隊(duì)進(jìn)1個(gè)球,失1個(gè)球。于是紅隊(duì)的凈勝球數(shù)為 4+(-2),黃隊(duì)的凈勝球數(shù)為1+(-1)。
這里用到正數(shù)與負(fù)數(shù)的加法。學(xué)生考慮一下,怎么計(jì)算 4+(-2)?
師:下面我們可以借助數(shù)軸來(lái)討論有理數(shù)的加法。
一個(gè)物體作左右方向運(yùn)動(dòng),我們規(guī)定向左為負(fù),向右為正。
① 兩次運(yùn)動(dòng)后物體從起點(diǎn)向右運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是什么?
1、理解掌握有理數(shù)的減法法則,會(huì)將有理數(shù)的減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算;
2、通過(guò)把減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算,向?qū)W生滲透轉(zhuǎn)化思想,通過(guò)有理數(shù)的減法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力。
3、通過(guò)揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義思想。
(一)重點(diǎn)、難點(diǎn)分析
本節(jié)重點(diǎn)是運(yùn)用有理數(shù)的減法法則熟練進(jìn)行減法運(yùn)算。解有理數(shù)減法的計(jì)算題需嚴(yán)格掌握兩個(gè)步驟:首先將減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算,然后依據(jù)有理數(shù)加法法則確定所求結(jié)果的符號(hào)和絕對(duì)值。理解有理數(shù)的減法法則是難點(diǎn),突破的關(guān)鍵是轉(zhuǎn)化,變減為加。學(xué)習(xí)中要注意體會(huì):小學(xué)遇到的小數(shù)減大數(shù)不會(huì)減的問(wèn)題解決了,小數(shù)減大數(shù)的差是負(fù)數(shù),在有理數(shù)范圍內(nèi),減法總可以實(shí)施。
(二)知識(shí)結(jié)構(gòu)
(三)教法建議
1、教師指導(dǎo)學(xué)生閱讀教材后強(qiáng)調(diào)指出:由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法。有理數(shù)的加法和減法,當(dāng)引進(jìn)負(fù)數(shù)后就可以統(tǒng)一用加法來(lái)解決。
2、不論減數(shù)是正數(shù)、負(fù)數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時(shí),注意被減數(shù)是永不變的。
3、因?yàn)槿魏螠p法運(yùn)算都可以統(tǒng)一成加法運(yùn)算,所以我們沒(méi)有必要再規(guī)定幾個(gè)帶有減法的運(yùn)算律,這樣有利于知識(shí)的鞏固和記憶。
4、注意引入負(fù)數(shù)后,小的數(shù)減去大的數(shù)就可以進(jìn)行了,其差可用負(fù)數(shù)表示。
有理數(shù)的減法
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1、掌握有理數(shù)的減法法則。
2、進(jìn)行有理數(shù)的減法運(yùn)算。
(二)能力訓(xùn)練點(diǎn)
1、通過(guò)把減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算,向?qū)W生滲透轉(zhuǎn)化思想。
2、通過(guò)有理數(shù)減法法則的推導(dǎo),發(fā)展學(xué)生的邏輯思維能力。
3、通過(guò)有理數(shù)的減法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力。
(三)德育滲透點(diǎn)
通過(guò)揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義思想。
(四)美育滲透點(diǎn)
在小學(xué)算術(shù)里減法不能永遠(yuǎn)實(shí)施,學(xué)習(xí)了本節(jié)課知道減法在有理數(shù)范圍內(nèi)可以永遠(yuǎn)實(shí)施,體現(xiàn)了知識(shí)體系的完整美。
二、學(xué)法引導(dǎo)
1、教學(xué)方法:教師盡量引導(dǎo)學(xué)生分析、歸納總結(jié),以學(xué)生為主體,師生共同參與教學(xué)活動(dòng)。
2、學(xué)生學(xué)法:探索新知→歸納結(jié)論→練習(xí)鞏固。
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1、重點(diǎn):有理數(shù)減法法則和運(yùn)算。
2、難點(diǎn):有理數(shù)減法法則的推導(dǎo)。
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
電腦、投影儀、自制膠片。
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師提出實(shí)際問(wèn)題,學(xué)生積極參與探索新知,教師出示練習(xí)題,學(xué)生以多種方式討論解決。
七、教學(xué)步驟
(一)創(chuàng)設(shè)情境,引入新課
1、計(jì)算(口答)(1);(2)-3+(-7);
(3)-10+(+3);(4)+10+(-3)。
2、由實(shí)物投影顯示課本第42頁(yè)本章引言中的畫(huà)面,這是北京冬季里的一天,白天的最高氣溫是10℃,夜晚的最低氣溫是-5℃。這一天的最高氣溫比最低氣溫高多少?
教師引導(dǎo)學(xué)生觀察:
生:10℃比-5℃高15℃。
師:能不能列出算式計(jì)算呢?
生:10-(-5)。
師:如何計(jì)算呢?
教師總結(jié):這就是我們今天要學(xué)的內(nèi)容。(引入新課,板書(shū)課題)
【教法說(shuō)明】
1、題目既復(fù)習(xí)鞏固有理數(shù)加法法則,同時(shí)為進(jìn)行有理數(shù)減法運(yùn)算打基礎(chǔ)。2題是一個(gè)具體實(shí)例,教師創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生的認(rèn)知興趣,把具體實(shí)例抽象成數(shù)學(xué)問(wèn)題,從而點(diǎn)明本節(jié)課課題—有理數(shù)的減法。
(二)探索新知,講授新課
師:大家知道10-3=7。誰(shuí)能把10-3=7這個(gè)式子中的性質(zhì)符號(hào)補(bǔ)出來(lái)呢?
生:(+10)-(+3)=+7。
師:計(jì)算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7。
師:讓學(xué)生觀察兩式結(jié)果,由此得到:
師:通過(guò)上述題,同學(xué)們觀察減法是否可以轉(zhuǎn)化為加法計(jì)算呢?生:可以。
師:是如何轉(zhuǎn)化的呢?
生:減去一個(gè)正數(shù)(+3),等于加上它的相反數(shù)(-3)。
【教法說(shuō)明】
教師發(fā)揮主導(dǎo)作用,注重學(xué)生的參與意識(shí),充分發(fā)展學(xué)生的思維能力,讓學(xué)生通過(guò)嘗試,自己認(rèn)識(shí)減法可以轉(zhuǎn)化為加法計(jì)算。
2、再看一題,計(jì)算(-10)-(-3)。
教師啟發(fā):要解決這個(gè)問(wèn)題,根據(jù)有理數(shù)減法的意義,這就是要求一個(gè)數(shù)使它與(-3)相加會(huì)得到-10,那么這個(gè)數(shù)是誰(shuí)呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教師給另外一個(gè)問(wèn)題:計(jì)算(-10)+(+3)。
生:(-10)+(+3)=-7。
教師引導(dǎo)、學(xué)生觀察上述兩題結(jié)果,由此得到:
教師進(jìn)一步引導(dǎo)學(xué)生觀察(2)式;你能得到什么結(jié)論呢?
生:減去一個(gè)負(fù)數(shù)(-3)等于加上它的相反數(shù)(+3)。
教師總結(jié):由(1)、(2)兩式可以看出減法運(yùn)算可以轉(zhuǎn)化成加法運(yùn)算。
第一課時(shí)
三維目標(biāo)
一、知識(shí)與技能
理解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)的加法運(yùn)算。
二、過(guò)程與方法
引導(dǎo)學(xué)生觀察符號(hào)及絕對(duì)值與兩個(gè)加數(shù)的符號(hào)及其他絕對(duì)值的關(guān)系,培養(yǎng)學(xué)生的分類、歸納、概括能力。
三、情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生主動(dòng)探索的良好學(xué)習(xí)習(xí)慣。
教學(xué)重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):掌握有理數(shù)加法法則,會(huì)進(jìn)行有理數(shù)的加法運(yùn)算。
2.難點(diǎn):異號(hào)兩數(shù)相加的法則。
3.關(guān)鍵:培養(yǎng)學(xué)生主動(dòng)探索的良好學(xué)習(xí)習(xí)慣。
四、教學(xué)過(guò)程
一、復(fù)習(xí)提問(wèn),引入新課
1.有理數(shù)的絕對(duì)值是怎樣定義的?如何計(jì)算一個(gè)數(shù)的絕對(duì)值?
2.比較下列每對(duì)數(shù)的大小。
(1)-3和-2; (2)│-5│和│5│; (3)-2與│-1│;(4)-(-7)和-│-7│。
五、新授
在小學(xué)里,我們已學(xué)習(xí)了加、減、乘、除四則運(yùn)算,當(dāng)時(shí)學(xué)習(xí)的運(yùn)算是在正有理數(shù)和零的范圍內(nèi)。然而實(shí)際問(wèn)題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍,例如,足球循環(huán)賽中,可以把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫做凈勝球數(shù)。本章前言中,紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球;藍(lán)隊(duì)進(jìn)1個(gè)球,失1個(gè)球,那么哪個(gè)隊(duì)的凈勝球多呢?
要解決這個(gè)問(wèn)題,先要分別求出它們的凈勝球數(shù)。
紅隊(duì)的凈勝球數(shù)為:4+(-2);
藍(lán)隊(duì)的凈勝球數(shù)為:1+(-1)。
這里用到正數(shù)與負(fù)數(shù)的加法。
怎樣計(jì)算4+(-2)呢?
下面借助數(shù)軸來(lái)討論有理數(shù)的加法。
看下面的問(wèn)題:
一個(gè)物體作左右方向的運(yùn)動(dòng),我們規(guī)定向左為負(fù)、向右為正。
(1)如果物體先向右運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是什么?
經(jīng)歷探索有理數(shù)加法法則,理解有理數(shù)加法的意義。初步掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)加法運(yùn)算。
有理數(shù)的加法法則
異號(hào)兩數(shù)相加的法則
一、復(fù)習(xí)提問(wèn):
1、如果向東走5米記作+5米,那么向
西走3米記作__.
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新課
小明在一條東西向的跑道上,先走了5米,又走了3米,能否確定他現(xiàn)在位于原來(lái)位置的哪個(gè)方向?與原來(lái)相距多少米?規(guī)定向東的方向?yàn)檎较?/p>
提問(wèn):這題有幾種情況?
小結(jié):有以下四種情況
(1)兩次都向東走,
(2)兩次都向西走
(3)先向東走,再向西走
(4)先向西走,再向東走
根據(jù)小結(jié),我們?cè)俜治雒恳环N情況:
(1)向東走5米,再向東走3米,一共向東走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向東走了多少米?
-5-3(-3)+(-5)=-8
(3)先向東走5米,再向西走3米,兩次一共向東走了多少米?
+3+5(+5)+(-3)=2
(4)先向西走5米,再向東走3米,兩次一共向東走了多少米?
-5+3(-5)+(+3)=-2
下面再看兩種特殊情況:
(5)向東走5米,再向西走5米,兩次一共向東走了多少米
-5+5(+5)+(-5)=0
(6)向西走5米,再向東走0米,兩次一共向東走了多少米?
-5(-5)+0=-5
小結(jié):總結(jié)前的六種情況:
同號(hào)兩數(shù)相加:(+5)+(+3)=+8
(-5)+(-3)=-8
異號(hào)兩數(shù)相加:(+5)+(-3)=2
(-5)+(+3)=-2
(+5)+(-5)=0
一數(shù)與零相加:(-5)+0=-5
得出結(jié)論:有理數(shù)加法法則
1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加
2、絕對(duì)值不等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。互為相反數(shù)的兩個(gè)數(shù)相加得零
3、一個(gè)數(shù)與零相加,仍得這個(gè)數(shù)
例如:
(-4)+(-5)(同號(hào)兩數(shù)相加)
解:=-()(取相同的符號(hào))
=-9(并把絕對(duì)值相加)
(-2)+(+6)(絕對(duì)值不等的異號(hào)兩數(shù)相加)
解:=+()(取絕對(duì)值較大的符號(hào))
=+4(用較大的絕對(duì)值減去較小的絕對(duì)值)
練習(xí):
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
3、7+(-4)=
4、4+(-4)=
5、9+(-2)=
6、(-0.5)+4.4=
7、(-9)+0=
8、0+(-3)=
計(jì)算:
(1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
練習(xí):
(1)15+(-22)=
(2)(-13)+(-8)=
(3)(-0·9)+1·5=
(4)2·7+(-3·5)=
(5)1/2+(-2/3)=
(6)(-1/4)+(-1/3)=
練習(xí)三:
1、填空:
(1)+11=27(2)7+=4
(3)(-9)+=9(4)12+=0
(5)(-8)+=-15(6)+(-13)=-6
2、用“<”或“>”號(hào)填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b<0,|a|>|b|,那么a+b0;
(4)如果a<0,b>0,|a|>|b|,那么a+b0
小結(jié):
1、掌握有理數(shù)的加法法則,正確地進(jìn)
行加法運(yùn)算。
2、兩個(gè)有理數(shù)相加,首先判斷加法類
型,再確定和的符號(hào),最后確定和的絕對(duì)值。
作業(yè):課本第38頁(yè)2、3
第40頁(yè)1、2
教學(xué)目標(biāo):
1、理解加法的意義。
2、總結(jié)歸納有理數(shù)的加法法則,并能運(yùn)用法則進(jìn)行有理數(shù)的加法運(yùn)算。
3、通過(guò)法則的探索,向?qū)W生滲透分類、歸納、轉(zhuǎn)化的數(shù)學(xué)思想。
教學(xué)重點(diǎn):
法則的探索與應(yīng)用
教學(xué)難點(diǎn):
異號(hào)兩數(shù)相加
教學(xué)準(zhǔn)備:
、預(yù)習(xí)教材,填上相應(yīng)的空白,思考并舉出運(yùn)用有理數(shù)加法的實(shí)例。
教學(xué)過(guò)程:
一、復(fù)習(xí)回顧
1、一個(gè)不為零的有理數(shù)可以看做是由哪兩部分組成的?
2、比較下列各組數(shù)絕對(duì)值哪個(gè)大?
①-22與30;
②-4.5和6
3、小學(xué)里學(xué)過(guò)哪類數(shù)的加法?引入負(fù)數(shù)后又該如何進(jìn)行有理數(shù)的加法運(yùn)算呢?
二、新知探究
1、打開(kāi)教材,請(qǐng)一位學(xué)生將他通過(guò)預(yù)習(xí)得到的加法算式說(shuō)出來(lái)寫(xiě)在黑板上,并說(shuō)出該式子表示的實(shí)際意義。
2、你還能舉出類似用加法運(yùn)算的實(shí)例嗎?
3、觀察這些算式,從加數(shù)上看你可以將它們分成幾類?每一類和的符號(hào)與加數(shù)的符號(hào)有何關(guān)系?和的絕對(duì)值與加數(shù)的絕對(duì)值有何關(guān)系?
4、總結(jié)歸納有理數(shù)的加法法則。
突破難點(diǎn):異號(hào)相加好比正數(shù)和負(fù)數(shù)進(jìn)行拔河比賽,誰(shuí)的力量(絕對(duì)值)大,誰(shuí)勝(用誰(shuí)的符號(hào)),結(jié)果考察力量懸殊有多大(較大絕對(duì)值減較小絕對(duì)值)。
(設(shè)置問(wèn)題情境,探究、總結(jié)、歸納法則。對(duì)比了華東師大版教材和北師版教材,都是以數(shù)軸為載體探究法則的,并且這種載體非常有利于理解加法的意義,以前也聽(tīng)過(guò)其他老師上這節(jié)課,用多媒體課件展示向東走、向西走,要么一晃而過(guò),要么總是糾纏不清,法則剛出來(lái),便下課了,所以,我就更換了一種模式,讓學(xué)生先預(yù)習(xí),然后說(shuō)出這些算式的實(shí)際意義更利于理解加法的意義。我認(rèn)為只要理解了加法的意義,應(yīng)該說(shuō)理解法則中“和”的符號(hào)與“和”的絕對(duì)值的由來(lái)更容易一些。)
三、運(yùn)用法則
例:計(jì)算
(1)(+2)+(-11)
(2)(-12)+(+12)
(3)(+20)+(+12)
(4)(- )+(- )
(5)(-3.4)+(+4.3)
(6)(-5.9)+0
四、鞏固法則
1、開(kāi)火車(chē)游戲。
第一位同學(xué)說(shuō)一個(gè)算式,第二位同學(xué)說(shuō)答案,第三位同學(xué)接著說(shuō)一個(gè)加法算式,第四位同學(xué)說(shuō)答案,依次類推,誰(shuí)卡住,誰(shuí)表演節(jié)目。
2、填數(shù)游戲。
將-8,-6,-4,-2,0,2,4,6,8這9個(gè)數(shù)分別填入右圖的9個(gè)空格中,使得每行的三個(gè)數(shù),每列的三個(gè)數(shù),斜對(duì)角的三個(gè)數(shù)相加均為0
3、思考:兩個(gè)有理數(shù)相加,和一定大于每一個(gè)加數(shù)嗎?
(設(shè)置了兩個(gè)游戲:開(kāi)火車(chē)和填數(shù),另外就是打破了小學(xué)的思維定勢(shì)“和總是大于加數(shù)”,引入負(fù)數(shù)后,是有變化的。設(shè)置問(wèn)題“兩個(gè)有理數(shù)相加,和一定大于每一個(gè)加數(shù)嗎?”讓學(xué)生對(duì)有理數(shù)加法理解的更深一些。)
五、小結(jié)。
反思:
“運(yùn)算能力”是修訂后的課程標(biāo)準(zhǔn)提出的“十大核心概念”之一,而“有理數(shù)加法”是有理數(shù)運(yùn)算的基礎(chǔ),也是實(shí)數(shù)運(yùn)算的基礎(chǔ),也就是一切運(yùn)算的基礎(chǔ),有理數(shù)加法法則是有理數(shù)加法運(yùn)算的準(zhǔn)繩,更是難倒了一大片初學(xué)者,有的同學(xué)學(xué)習(xí)了有理數(shù)的加法法則不但不能敘述法則,反倒連小學(xué)學(xué)過(guò)的非負(fù)數(shù)的加法運(yùn)算也不會(huì)了,如何突破這個(gè)障礙,我認(rèn)為關(guān)鍵還是加法意義的理解,應(yīng)讓學(xué)生置身于現(xiàn)實(shí)情境中搞清楚加法究竟是怎么回事,這樣一來(lái)“和”的符號(hào)的確定與“和”的絕對(duì)值的確定也就是順理成章的事兒了。
對(duì)比了華東師大版教材和北師版教材,都是以數(shù)軸為載體探究法則的,并且這種載體非常有利于理解加法的意義,以前也聽(tīng)過(guò)其他老師上這節(jié)課,用多媒體課件展示向東走、向西走,要么一晃而過(guò),要么總是糾纏不清,法則剛出來(lái),便下課了,所以,我就更換了一種模式,讓學(xué)生先預(yù)習(xí),熟知加法就是連續(xù)兩次變化的總結(jié)果,然后再給這些算式賦予新的實(shí)際意義更利于理解加法的意義。其實(shí),只要理解了加法的意義,應(yīng)該說(shuō)理解法則中“和”的符號(hào)與“和”的絕對(duì)值的由來(lái)更容易一些,通過(guò)操作,學(xué)生對(duì)于將算式置于實(shí)際情景非常感興趣。對(duì)于接下來(lái)將算式按加數(shù)分類,探究和的符號(hào)與加數(shù)符號(hào)的關(guān)系,還有和的絕對(duì)值與加數(shù)絕對(duì)值的關(guān)系都有著濃厚的興趣,尤其是得到“互為相反的兩數(shù)相加和為零”時(shí)就有學(xué)生提到:異號(hào)兩數(shù)相加其實(shí)就是正負(fù)一抵消,余下的部分就是和。看來(lái)只要在課堂上通過(guò)適當(dāng)?shù)囊龑?dǎo)讓學(xué)生自身釋放出琢磨的能量比讓學(xué)生打開(kāi)大腦的錄音系統(tǒng)錄音要好得多。通過(guò)后續(xù)學(xué)習(xí)的考察,學(xué)生對(duì)于加法法則的記憶與應(yīng)用并非停留在表面的記憶上,而是對(duì)法則有了更深層次的理解,也沒(méi)有學(xué)生刻意追求用教材上的句子一字不漏地來(lái)敘述加法法則,他們都能用自己理解的語(yǔ)言來(lái)說(shuō)明到底是為什么。
再思考:這節(jié)課是我調(diào)入新的學(xué)校上的匯報(bào)課,領(lǐng)導(dǎo)還有同事們對(duì)我的課都做出了中肯的點(diǎn)評(píng),最后一位頗有資歷的領(lǐng)導(dǎo)談到:數(shù)學(xué)教學(xué)應(yīng)體現(xiàn)其本質(zhì),用“數(shù)軸”探究有理數(shù)的的加法更能體現(xiàn)加法的本質(zhì),授課者應(yīng)做好合理的應(yīng)用。換言之,本節(jié)課未能很好體現(xiàn)加法的本質(zhì)。個(gè)人思考再三認(rèn)為加法的本質(zhì)就是“連續(xù)兩次變化的總結(jié)果”,用數(shù)軸表示向東走向西走,還是舉生活中的盈虧實(shí)例等都體現(xiàn)了加法的本質(zhì)。新舊版本的華師大教材都是以“數(shù)軸”為載體探究有理數(shù)加法法則的,這種載體的應(yīng)用主要凸顯了直觀,變化的結(jié)果一清二楚,也體現(xiàn)了數(shù)與形的有效結(jié)合,無(wú)疑是一種很好而有效的載體,但我們?yōu)槭裁床辉诮滩默F(xiàn)有載體的基礎(chǔ)上做一些突破,讓學(xué)生從多角度多方位理解加法運(yùn)算呢!其實(shí)現(xiàn)實(shí)生活中的“盈”與“虧”生活氣息濃郁,且學(xué)生熟知,會(huì)吸引眾多的學(xué)生參與,“同號(hào)相加”就是“盈盈”型或“虧虧”型,“異號(hào)兩數(shù)相加”就是“盈虧”型,(+5)+(-5)為什么是0?顯然盈虧一樣,最終兜里沒(méi)錢(qián)!而(+3)+(-10)為什么結(jié)果取“-”且用“10-3”,盈少虧多唄!最終還是虧了7元!將加法置身于這樣的情景更有利于理解加法的意義,總結(jié)加法法則,理解加法法則。
1.1地位、作用
在初中階段,要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題的數(shù)學(xué)意識(shí),增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的理解和解決實(shí)際問(wèn)題的能力。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的運(yùn)算是初等數(shù)學(xué)的基本運(yùn)算,掌握有理數(shù)的運(yùn)算,是學(xué)好后續(xù)內(nèi)容的重要前提。有理數(shù)的加法作為有理數(shù)的運(yùn)算的一種,它是有理數(shù)運(yùn)算的重要基礎(chǔ)之一,也是整個(gè)初中代數(shù)的一個(gè)基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實(shí)數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、研究函數(shù)等內(nèi)容的學(xué)習(xí)。
1.2學(xué)情分析
在初中數(shù)學(xué)教學(xué)中,非智力因素在認(rèn)知過(guò)程中起十分重要的作用,而興趣在非智力因素中占有特殊的地位,它是學(xué)生學(xué)習(xí)自覺(jué)性和積極性的核心因素,是學(xué)習(xí)的強(qiáng)化劑。因此,從初一開(kāi)始培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣,是其學(xué)好數(shù)學(xué)的重要保障。圍繞這一點(diǎn),在教學(xué)中要讓不同程度的學(xué)生都有體驗(yàn)成功的機(jī)會(huì),教學(xué)中教師為導(dǎo)、學(xué)生為主,充分認(rèn)識(shí)初一學(xué)生這個(gè)年齡段的心理特征:好奇心強(qiáng);好勝心強(qiáng);抽象思維能力弱,過(guò)分依賴直觀;意志薄弱,缺乏毅力。
另一方面,課本知識(shí)的傳授是符合學(xué)生的認(rèn)知發(fā)展特點(diǎn)的。在前期段,學(xué)生已經(jīng)儲(chǔ)藏了兩個(gè)正數(shù)的加法,較大數(shù)減較小數(shù)的減法,引入了負(fù)數(shù),有必要再學(xué)習(xí)有理數(shù)的加法,然后過(guò)渡到有理數(shù)的其它運(yùn)算,再到式的運(yùn)算、方程、函數(shù)的運(yùn)算;同時(shí),負(fù)數(shù)、數(shù)軸、絕對(duì)值的學(xué)習(xí)又為這節(jié)課的學(xué)習(xí)方法奠定了基礎(chǔ)。
1.3教學(xué)目標(biāo)
根據(jù)本節(jié)所處的地位與作用,結(jié)合學(xué)生的具體學(xué)情,確定本節(jié)課的教學(xué)目標(biāo)如下:
知識(shí)目標(biāo):通過(guò)將生活中的問(wèn)題轉(zhuǎn)化為有理數(shù)加法的全過(guò)程,使學(xué)生直觀形象地理解有理數(shù)加法的意義,掌握有理數(shù)的加法法則,并能正確運(yùn)用。
能力目標(biāo):通過(guò)情境的設(shè)計(jì),培養(yǎng)學(xué)生的探索創(chuàng)新精神。在學(xué)生學(xué)習(xí)的過(guò)程中,滲透分類思想、數(shù)形結(jié)合思想與及綜合、歸納、概括的能力。
情感目標(biāo):通過(guò)教師引導(dǎo)下的探索,讓學(xué)生感受到數(shù)學(xué)學(xué)習(xí)的價(jià)值與樂(lè)趣。
1.4教材處理
根據(jù)本節(jié)教材的內(nèi)容,我把有理數(shù)的加法劃分為兩個(gè)課時(shí),第一課時(shí)學(xué)習(xí)有理數(shù)的加法法則并能準(zhǔn)確進(jìn)行兩個(gè)數(shù)的加法運(yùn)算;第二節(jié)課學(xué)習(xí)有理數(shù)的加法運(yùn)算律并能準(zhǔn)確進(jìn)行多個(gè)數(shù)的加法運(yùn)算。
2.1教學(xué)重點(diǎn):有理數(shù)加法法則的理解與運(yùn)用(而不是簡(jiǎn)單地記憶法則)。
2.2教學(xué)難點(diǎn):異號(hào)兩數(shù)加法的實(shí)際意義及法則的歸納。
本課采用多媒體輔助教學(xué),從學(xué)生熟悉的人物出發(fā),激發(fā)學(xué)生探索欲;通過(guò)層層鋪墊,引導(dǎo)學(xué)生利用已學(xué)數(shù)學(xué)工具探索新知;在學(xué)生探索的基礎(chǔ)上,有意識(shí)地引導(dǎo)學(xué)生對(duì)多樣化的結(jié)果進(jìn)行分類整理;在法則的提煉過(guò)程中,培養(yǎng)學(xué)生類比、歸納和概括的學(xué)習(xí)能力。
在本節(jié)的設(shè)計(jì)過(guò)程中,利用了一道開(kāi)放性習(xí)題引出課題,讓學(xué)生在研究中學(xué)習(xí),對(duì)學(xué)生進(jìn)行能力培養(yǎng),充分跨越學(xué)生的最近發(fā)展區(qū)。
4.1創(chuàng)設(shè)情境,讓學(xué)生的思維“動(dòng)”起來(lái)
[生活情境]劉翔是世界男子青年錦標(biāo)賽110米欄的冠軍,是中國(guó)人的驕傲。從他的體育精神中我們應(yīng)該學(xué)習(xí)他堅(jiān)忍不拔的刻苦精神,激勵(lì)學(xué)生愛(ài)國(guó)、立志。將跑道抽象為數(shù)軸,起跑點(diǎn)為原點(diǎn),將生活問(wèn)題數(shù)學(xué)化。
說(shuō)明:這種從生活到數(shù)學(xué)的建模,從學(xué)生感興趣的題材出發(fā),為創(chuàng)設(shè)下文的探索情境作一個(gè)興奮點(diǎn)的刺激,讓每個(gè)學(xué)生都有信心并且能夠積極嘗試、探索。
4.2體驗(yàn)進(jìn)程,讓學(xué)生的思維“活”起來(lái)
“數(shù)學(xué)是問(wèn)題的心臟”,是教學(xué)的出發(fā)點(diǎn),由問(wèn)題引入課題能使學(xué)生產(chǎn)生較強(qiáng)的未知欲。
[開(kāi)放式探索]劉翔在一條東西方向的跑道上往返跑步進(jìn)行訓(xùn)練,他連續(xù)跑了兩段路,共跑了80米。問(wèn)劉翔兩次以后的位置可能在哪里?設(shè)計(jì)意圖:這是一道條件不唯一,結(jié)果也不唯一的開(kāi)放性題型,對(duì)學(xué)生有一定的挑戰(zhàn)性。它的優(yōu)點(diǎn)在于:只要理解題意,任何一個(gè)學(xué)生都能答對(duì)至少一種正確答案;同時(shí)它的答案又分多種情況,學(xué)生由于思維的不完備性,很容易丟失答案,并且這種錯(cuò)誤在別人的提醒中能馬上恍然大悟。這是一道能鍛煉學(xué)生思維的靈活性、嚴(yán)謹(jǐn)性及答案適用分類討論、培養(yǎng)學(xué)生概括能力的好題。在本題中,包含學(xué)生對(duì)有理數(shù)加法的意義的理解及探索有理數(shù)加法加數(shù)的幾種類別(從正負(fù)性上區(qū)分),在求和的過(guò)程中,讓學(xué)生有機(jī)會(huì)經(jīng)歷從實(shí)物模擬到表象操作再到符號(hào)操作的轉(zhuǎn)化。
教學(xué)方法:用課件幫助學(xué)生思維從“實(shí)物操作”過(guò)渡到“表象操作”并優(yōu)化思路;給予學(xué)生充分的思考機(jī)會(huì);善于抓住學(xué)生思維的弱勢(shì)因勢(shì)利導(dǎo)。
預(yù)計(jì)困難:①學(xué)生直觀思維理解“共跑了80米”就是在離出發(fā)點(diǎn)80米遠(yuǎn)的地方。這是一個(gè)距離與位移的概念混淆并且教學(xué)中不宜新增概念。 ②條件中的“兩段”和“80米”分別對(duì)應(yīng)加法中的什么量?有的學(xué)生不理解題意,可能放棄。
處理方法:①教學(xué)中學(xué)生思維上的弱點(diǎn)也可能會(huì)成為他這堂課思維的亮點(diǎn),讓學(xué)生在練習(xí)紙上嘗試“實(shí)物操作”思維方式,自己突破思維瓶頸。②在學(xué)生正確理解80米的條件使用方法后,再讓學(xué)生比較80與加數(shù)的絕對(duì)值、和的絕對(duì)值的關(guān)系,在理解能力上更上一層樓。③區(qū)別不同程度的學(xué)生,可以從“列式子”,“列等式”,問(wèn)“為什么”逐步遞進(jìn),讓盡可能多的學(xué)生嘗試最近發(fā)展區(qū)。
教學(xué)注意點(diǎn):要明確本堂課的教學(xué)重點(diǎn)和目標(biāo),對(duì)開(kāi)放題的探索淺嘗止,不深究問(wèn)題的所有可能性,剪輯學(xué)生答案盡快引出課題。
4.3探究規(guī)律,讓學(xué)生的思維“跳”起來(lái)
用分類討論的方法進(jìn)行有理數(shù)的加法規(guī)律的歸納是本節(jié)課的重點(diǎn)和難點(diǎn),教師要依據(jù)學(xué)生現(xiàn)有得出的學(xué)習(xí)發(fā)現(xiàn)組織語(yǔ)言,減少指示或命令性語(yǔ)言,爭(zhēng)取把課堂靜止或?qū)W生不理解時(shí)間減至最少。
在答案的匯總過(guò)程中,要肯定學(xué)生的探索,愛(ài)護(hù)學(xué)生的學(xué)習(xí)興趣和探索欲。讓學(xué)生作課堂的主人,陳述自己的結(jié)果。對(duì)學(xué)生的不完整或不準(zhǔn)確回答,教師適當(dāng)延遲評(píng)價(jià);要鼓勵(lì)學(xué)生創(chuàng)造性思維,教師要及時(shí)抓住學(xué)生智慧的火花的閃現(xiàn),這一瞬間的心理激勵(lì),是培養(yǎng)學(xué)生創(chuàng)造力、充分挖掘潛能的有效途徑。
預(yù)先設(shè)想學(xué)生思路,可能從以下方面分類歸納,探索規(guī)律:
①?gòu)募訑?shù)的不同符號(hào)情況(可遇見(jiàn)情況:正數(shù)+正數(shù);負(fù)數(shù)+負(fù)數(shù);正數(shù)+負(fù)數(shù);數(shù)+0)
②從加數(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))
③從有理數(shù)加法法則的分類(同號(hào)兩數(shù)相加;異號(hào)兩數(shù)相加;同0相加)
④從向量的迭加性方面(加數(shù)的絕對(duì)值相加;加數(shù)的絕對(duì)值相減)
⑤從和的符號(hào)確定方面(同號(hào)兩數(shù)相加符號(hào)的確定;異號(hào)兩數(shù)相加符號(hào)的確定)
教學(xué)中要避免課堂熱熱鬧鬧,卻陷入數(shù)學(xué)教學(xué)的淺薄與貧乏。
1,在現(xiàn)實(shí)背景中理解有理數(shù)加法的意義。
2,經(jīng)歷探索有理數(shù)加法法則的過(guò)程,理解有理數(shù)的加法法則。
3,能積極地參與探究有理數(shù)加法法則的活動(dòng),并學(xué)會(huì)與他人交流合作。
4,能較為熟練地進(jìn)行有理數(shù)的加法運(yùn)算,并能解決簡(jiǎn)單的實(shí)際間題。
5,在教學(xué)中適當(dāng)滲透分類討論思想
異號(hào)兩數(shù)相加
和的符號(hào)的確定
(師生活動(dòng))設(shè)計(jì)理念
引入課題回顧用正負(fù)數(shù)表示數(shù)量的實(shí)際例子;
在足球比賽中,如果把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫做凈勝球數(shù)。若紅隊(duì)進(jìn)4個(gè)球,失2個(gè)球,則紅隊(duì)的勝球數(shù),可以怎樣表示?藍(lán)隊(duì)的勝球數(shù)呢?
師:如何進(jìn)行類似的有理數(shù)的加法運(yùn)算呢?這就是我們這節(jié)課一起與大家探討的問(wèn)題。
(出示課題)讓學(xué)生感受到在實(shí)際問(wèn)題中做加法運(yùn)算的數(shù)可能超出正數(shù)的范圍,體會(huì)學(xué)習(xí)有理數(shù)加法的必要性,激發(fā)學(xué)生探究新知的興趣。
探究新知如果是球隊(duì)在某場(chǎng)比賽中上半場(chǎng)失了兩個(gè)球,下
半場(chǎng)失了3個(gè)球,那么它的得勝球是幾個(gè)呢?算式應(yīng)該
怎么列?若這支球隊(duì)上半場(chǎng)進(jìn)了2個(gè)球,下半場(chǎng)失了3個(gè)球,又如何列出算式,求它的得勝球呢?
(學(xué)生思考回答)
思考:請(qǐng)同學(xué)們想想,這支球隊(duì)在這場(chǎng)比賽中還可
能出現(xiàn)其他的什么情況?你能列出算式嗎?與同伴交流。
學(xué)生相互交流后,教師進(jìn)一步引導(dǎo)學(xué)生可以把兩個(gè)有理數(shù)相加歸納為同號(hào)兩數(shù)相加、異號(hào)兩數(shù)相加、一個(gè)數(shù)同零相加這三種情況。
2,借助數(shù)軸來(lái)討論有理數(shù)的加法。I
一個(gè)物體向左右方向運(yùn)動(dòng),我們規(guī)定向左運(yùn)動(dòng)為負(fù),向右為正,向右運(yùn)動(dòng)5m,記作5m,向左運(yùn)動(dòng)5m,記作—5m。
(1)(小組合作)把我們已經(jīng)得出的幾種有理數(shù)相加的情況在數(shù)軸上用運(yùn)動(dòng)的方向表示出來(lái),并求出結(jié)果,解釋它的意義。
(2)交流匯報(bào)。(對(duì)學(xué)習(xí)小組的匯報(bào)結(jié)果,數(shù)軸用實(shí)物投影儀展示,算式由教師寫(xiě)在黑板上)
(3)說(shuō)一說(shuō)有理數(shù)相加應(yīng)注意什么?(符號(hào),絕對(duì)值)能用自己的語(yǔ)言歸納如何相加嗎?
(4)在學(xué)生歸納的基礎(chǔ)上,教師出示有理數(shù)加法法則。
1,同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
2,絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)的兩個(gè)數(shù)相加得0。
3,一個(gè)數(shù)同。相加,仍得這個(gè)數(shù)。再次創(chuàng)設(shè)足球比賽情境,一方面與引題相呼應(yīng),聯(lián)系密切,另一方面讓學(xué)生在此情境中感受到有理數(shù)相加的幾種不同情形,并能將它分類,滲透分類討論思想。
估計(jì)學(xué)生能順利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。
但不能把它歸的為同號(hào)異號(hào)等三類,所以此處需教師。點(diǎn)拔、指扎,體現(xiàn)教師的引導(dǎo)者作用。
①假設(shè)原點(diǎn)0為第一次運(yùn)動(dòng)起點(diǎn),第二次運(yùn)動(dòng)的起點(diǎn)是第一次運(yùn)動(dòng)的終點(diǎn)。②若學(xué)生在學(xué)習(xí)小組內(nèi)不能很好地參與探究,也可以讓其參照教科書(shū)第21頁(yè)的“探究”自主進(jìn)行。③讓學(xué)生感受“數(shù)學(xué)模型”的思想。④學(xué)會(huì)與同伴交流,并在交流中獲益。培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力和歸納能力,也許學(xué)生說(shuō)得不夠嚴(yán)謹(jǐn),但這并不重要,重要的足能用自己的語(yǔ)言表達(dá)自己所發(fā)現(xiàn)的規(guī)律
解決問(wèn)題解決問(wèn)題
例1計(jì)算:
(1)(—3)+(—9);(2)(—5)+13;
(3)0十(—7);(4)(—4。7)+3。9。
教師板演,讓學(xué)生說(shuō)出每一步運(yùn)算所依據(jù)的法則。
請(qǐng)同學(xué)們比較,有理數(shù)的加法運(yùn)算與小學(xué)時(shí)候?qū)W的加法有什么異同?(如:有理數(shù)加法計(jì)算中要注意符號(hào),和不一定大于加數(shù)等等)
例2足球循環(huán)賽中,紅隊(duì)4:1勝黃隊(duì),黃隊(duì)1:0勝藍(lán)隊(duì)藍(lán)隊(duì)1:0勝紅隊(duì),計(jì)算各隊(duì)的凈勝球數(shù)。
(讓學(xué)生讀數(shù),理解題意,思考解決方案,然后由學(xué)生口述,教師板書(shū))
學(xué)生活動(dòng):請(qǐng)學(xué)生說(shuō)一說(shuō)在生活中用到有理數(shù)加法的例子。注意點(diǎn):(1)下先確定是哪種類型的加法再定符號(hào),最后算絕對(duì)位。(2)教教師板演的例通要完整體現(xiàn)過(guò)程,并要求學(xué)生在剛開(kāi)始學(xué)的時(shí)候要把中間的過(guò)
程寫(xiě)完整。(3)體現(xiàn)化歸思想。(4)這里增加了兩道題目,要是讓學(xué)生能較為熟練地運(yùn)用法則進(jìn)行計(jì)算。
拓寬學(xué)生視野,讓學(xué)
生體會(huì)到數(shù)學(xué)與生活的密切聯(lián)系。
課堂練習(xí)教科書(shū)第23頁(yè)練習(xí)
課堂小結(jié)通過(guò)這節(jié)課的學(xué)習(xí),你有哪些收獲,學(xué)生自己總結(jié)。
本課作業(yè)必做題:閱讀教科書(shū)第20~22頁(yè),教科書(shū)第31習(xí)題1。3第1、12、第13題。
本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)
1,在本節(jié)課的設(shè)計(jì)中,注重引導(dǎo)學(xué)生參與探究、歸納(用自己的語(yǔ)言敘迷)有理數(shù)加法法則的過(guò)程。
2,注意滲透數(shù)學(xué)思想方法。數(shù)學(xué)思想方法的滲透不可能立即見(jiàn)效,也不可能靠一朝一夕讓學(xué)生理解、掌握,所以,本節(jié)課在這一方面主要是讓學(xué)生感知研究數(shù)學(xué)問(wèn)題的一般方法(分類、辯析、歸納、化歸等)。如在探究加法法則時(shí),有意識(shí)地把各種情況先分為三類(同號(hào)、異號(hào),一個(gè)數(shù)同0相加);在運(yùn)用法則時(shí),當(dāng)和的符號(hào)確定以后,有理數(shù)的加法就轉(zhuǎn)化為算術(shù)的加減法。
3,注意學(xué)生合作學(xué)習(xí)的學(xué)習(xí)方式,讓學(xué)生在與他人合作中受益,學(xué)會(huì)交流,學(xué)會(huì)傾聽(tīng)
附板書(shū):1。3。1有理數(shù)的加法(一)
1.進(jìn)一步熟練掌握有理數(shù)加法的法則。
2.掌握有理數(shù)加法的運(yùn)算律,并能運(yùn)用加法運(yùn)算律簡(jiǎn)化運(yùn)算。
啟發(fā)引導(dǎo)式教學(xué),能夠由特殊到一般、由一般到特殊,體會(huì)研究數(shù)學(xué)的一些基本方法。
1.培養(yǎng)學(xué)生的分類與歸納能力。
2.強(qiáng)化學(xué)生的數(shù)形結(jié)合思想。
3.提高學(xué)生的自學(xué)以及理解能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
加法運(yùn)算律的靈活運(yùn)用,解決實(shí)際問(wèn)題。
能運(yùn)用加法運(yùn)算律簡(jiǎn)化運(yùn)算,加法在實(shí)際中的應(yīng)用。
采取啟發(fā)式教學(xué)法及情感教學(xué),引導(dǎo)學(xué)生主動(dòng)思考,主動(dòng)探索。用大量的實(shí)例讓學(xué)生得出規(guī)律。
1.復(fù)習(xí)有理數(shù)的加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
(2)異號(hào)兩數(shù)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
(3)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
2.口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8
(一)情境引入,提出問(wèn)題:
鼓勵(lì)學(xué)生通過(guò)自己的探索,交流、歸納,自主得出有理數(shù)加法的運(yùn)算律。
1.敘述有理數(shù)的加法法則.
2.小學(xué)學(xué)過(guò)的加法的運(yùn)算律是不是也可以擴(kuò)充到有理數(shù)范圍?
3.計(jì)算下列各組數(shù)的值,并觀察尋找規(guī)律。
(1) (-7)+(-5) (-5)+(-7)
(2) [8+(-5)]+(-4) 8+[(-5)+(-4)]
(3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]
結(jié)論:在有理數(shù)運(yùn)算中,加法交換律、結(jié)合律仍然成立。
(二)活動(dòng)探究,猜想結(jié)論:
交換律——兩個(gè)有理數(shù)相加,交換加數(shù)的位置,和不變.
用代數(shù)式表示:a+b=b+a
運(yùn)算律式子中的字母a、b表示任意的一個(gè)有理數(shù),可以是正數(shù),也可以是負(fù)數(shù)或者零.
在同一個(gè)式子中,同一個(gè)字母表示同一個(gè)數(shù).
結(jié)合律——三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變.
用代數(shù)式表示:(a+b)+c=a+(b+c)
這里a、b、c表示任意三個(gè)有理數(shù).
(三)驗(yàn)證結(jié)論:
例1計(jì)算16+(-25)+24+(-32)
(引導(dǎo)學(xué)生發(fā)現(xiàn),在本例中,把正數(shù)與負(fù)數(shù)分別結(jié)合在一起再相加,計(jì)算就比較簡(jiǎn)便)
解:16+(-25)+24+(-32)
=[16+24]+[(-25)+(-32)] (加法結(jié)合律)
=40+(-57) (同號(hào)相加法則)
=-17 (異號(hào)相加法則)
例2計(jì)算:31+(-28)+28+69
(引導(dǎo)學(xué)生發(fā)現(xiàn),在本例中,把互為相反數(shù)的兩個(gè)數(shù)相加得0,計(jì)算比較簡(jiǎn)便)
解:31+(-28)+28+69
=31+69+[(-28)+28]
=100+0
=100
3.若兩個(gè)有理數(shù)的和為負(fù)數(shù),那么這兩個(gè)有理數(shù)()
A.一定都是負(fù)數(shù)B.一正一負(fù),且負(fù)數(shù)的絕對(duì)值大
C.一個(gè)為零,另一個(gè)為負(fù)數(shù)D.至少有一個(gè)是負(fù)數(shù)
4.兩個(gè)有理數(shù)的和()
A.一定大于其中的一個(gè)加數(shù)
B.一定小于其中的一個(gè)加數(shù)
C.和的大小由兩個(gè)加數(shù)的符號(hào)而定
D.和的大小由兩個(gè)加數(shù)的符號(hào)與絕對(duì)值而定
5.如果a,b是有理數(shù),那么下列各式中成立的是()
A.如果a<0,b<0,那么a+b>0
B.如果a>0,b<0,那么a+b>0
C.如果a>0,b<0,那么a+b<0
D.如果a>0,b<0,且|a|>|b|,那么a+b>0
7.張大伯共有7塊麥田,今年的收成與去年相比(增產(chǎn)為正,減產(chǎn)為負(fù))情況如下(單位:kg):+320,-170,-320,+130,+150,+40,-150.則今年小麥的總產(chǎn)量與去年相比()
A.增產(chǎn)20 kg B.減產(chǎn)20 kg C.增長(zhǎng)120 kg D.持平
8.一口井水面比井口低3米,一只蝸牛從水面沿著井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,卻又下滑了0.15米;第三次往上爬了0.7米,卻又下滑了0.15米;第四次往上爬了0.75米,卻又下滑了0.2米;第五次往上爬了0.55米,沒(méi)有下滑;第六次往上爬了0.48米,此時(shí)蝸牛有沒(méi)有爬出井口?請(qǐng)通過(guò)列式計(jì)算加以說(shuō)明
1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號(hào)法則和絕對(duì)值運(yùn)算法則;
2.能根據(jù)有理數(shù)加法法則熟練地進(jìn)行有理數(shù)加法運(yùn)算,弄清有理數(shù)加法與非負(fù)數(shù)加法的區(qū)別;
3.三個(gè)或三個(gè)以上有理數(shù)相加時(shí),能正確應(yīng)用加法交換律和結(jié)合律簡(jiǎn)化運(yùn)算過(guò)程;
4.通過(guò)有理數(shù)加法法則及運(yùn)算律在加法運(yùn)算中的運(yùn)用,培養(yǎng)學(xué)生的運(yùn)算能力;
5.本節(jié)課通過(guò)行程問(wèn)題說(shuō)明有理數(shù)的加法法則的合理性,然后又通過(guò)實(shí)例說(shuō)明如何運(yùn)用法則和運(yùn)算律,讓學(xué)生感知到數(shù)學(xué)知識(shí)來(lái)源于生活,并應(yīng)用于生活。
重點(diǎn):是依據(jù)有理數(shù)的加法法則熟練進(jìn)行有理數(shù)的加法運(yùn)算。
難點(diǎn):是有理數(shù)的加法法則的理解。
(1)加法法則本身是一種規(guī)定,教材通過(guò)行程問(wèn)題讓學(xué)生了解法則的合理性。
(2)具體運(yùn)算時(shí),應(yīng)先判別題目屬于運(yùn)算法則中的哪個(gè)類型,是同號(hào)相加、異號(hào)相加、還是與0相加。
(3)如果是同號(hào)相加,取相同的符號(hào),并把絕對(duì)值相加。如果是異號(hào)兩數(shù)相加,應(yīng)先判別絕對(duì)值的大小關(guān)系,如果絕對(duì)值相等,則和為0;如果絕對(duì)值不相等,則和的符號(hào)取絕對(duì)值較大的加數(shù)的符號(hào),和的絕對(duì)值就是較大的絕對(duì)值與較小的絕對(duì)值的差。一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
1.對(duì)于基礎(chǔ)比較差的同學(xué),在學(xué)習(xí)新課以前可以適當(dāng)復(fù)習(xí)小學(xué)中算術(shù)運(yùn)算以及正負(fù)數(shù)、相反數(shù)、絕對(duì)值等知識(shí)。
2.有理數(shù)的加法法則是規(guī)定的,而教材開(kāi)始部分的行程問(wèn)題是為了說(shuō)明加法法則的合理性。
3.應(yīng)強(qiáng)調(diào)加法交換律a+b=b+a中字母a、b的任意性。
4.計(jì)算三個(gè)或三個(gè)以上的加法算式,應(yīng)建議學(xué)生養(yǎng)成良好的運(yùn)算習(xí)慣。不要盲目動(dòng)手,應(yīng)該先仔細(xì)觀察式子的特點(diǎn),深刻認(rèn)識(shí)加數(shù)間的相互關(guān)系,找到合理的運(yùn)算步驟,再適當(dāng)運(yùn)用加法交換律和結(jié)合律可以使加法運(yùn)算更為簡(jiǎn)化。
5.可以給出一些類似兩數(shù)之和必大于任何一個(gè)加數(shù)的判斷題,以明確由于負(fù)數(shù)參與加法運(yùn)算,一些算術(shù)加法中的正確結(jié)論在有理數(shù)加法運(yùn)算中未必也成立。
6.在探討導(dǎo)出有理數(shù)的加法法則的行程問(wèn)題時(shí),可以嘗試發(fā)揮多媒體教學(xué)的作用。用動(dòng)畫(huà)演示人或物體在同一直線上兩次運(yùn)動(dòng)的過(guò)程,讓學(xué)生更好的理解有理數(shù)運(yùn)算法則。
1、使學(xué)生掌握有理數(shù)加法的運(yùn)算律,并能運(yùn)用加法運(yùn)算律簡(jiǎn)化運(yùn)算。
2、培養(yǎng)學(xué)生觀察、比較、歸納及運(yùn)算能力。
重點(diǎn):有理數(shù)加法運(yùn)算律及其運(yùn)用。
重點(diǎn):靈活運(yùn)用運(yùn)算律
一、創(chuàng)設(shè)情境,引入新課
1、小學(xué)時(shí)已學(xué)過(guò)的加法運(yùn)算律有哪幾條?
2、猜一猜:在有理數(shù)的加法中,這兩條運(yùn)算律仍然適用嗎?
3、(1)計(jì)算30+(-20)=__________=______,-20+30=___________=_____;
(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。
二、講授新課
教師:你會(huì)用文字表述加法的兩條運(yùn)算律嗎?你會(huì)用字母表示加法的這兩條運(yùn)算律嗎?
(學(xué)生回答省略)
師生共同歸納:加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。 即:a+b=b+a
加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。即(a+b)+c=a+(b+c)
講解例3
教師:例3中是怎樣使計(jì)算簡(jiǎn)化的?這樣做的根據(jù)是什么?(請(qǐng)兩位同學(xué)起來(lái)回答)
三、鞏固知識(shí)
教師:例4中用了兩種方法,比較兩種解法,哪種方法比較好?解法2中使用了哪些運(yùn)算律?
師生共同得出:解法2比較好,因?yàn)樗倪\(yùn)算量比較小。解法2中使用了加法交換律和加法結(jié)合律。
四、總結(jié)
本節(jié)課主要學(xué)習(xí)有理數(shù)加法運(yùn)算律及其運(yùn)用,主要用到的思想方法是類比思想,需要注意的是:有理數(shù)的加法運(yùn)算律與小學(xué)學(xué)習(xí)的運(yùn)算律相同,運(yùn)用加法運(yùn)算律的目的為了簡(jiǎn)化運(yùn)算。解題技巧是將正數(shù)分別相加,再把負(fù)數(shù)分別相加,然后再把它們的和相加。
五、布置作業(yè)